University of Birmingham

Department of Electronic, Electrical and Computer Engineering

BIRMINGHAM

MSc Dissertation

An autonomous, co-operative
tele-robotic agent framework for

WowWee Rovio

Konstantinos Tsimpoukas
1.D. 1130191
MSc Embedded Systems

Supervisor: Theo Arvanitis

September 2011
Birmingham, UK

ACKNOWLEDGEMENTS

I would like to thank Dr Theodoros N. Arvanitis, my dissertation supervisor, for letting me
choosing an interesting and challenging project. Also, | would like to thank the Department of
Electronic, Electrical and Computer Engineering of the University of Birmingham, and the Centre
for Learning, Innovation and Collaboration for providing the appropriate tools and equipment to
fulfil successfully my MSc final project.

Many thanks to my family and friends that they were there when | needed them and for the

support that they always provide me.

ABSTRACT

This project presents a telerobotic agent framework for WowWee Rovio. An advanced and
parametrical Graphical User Interface has been implemented. Through this GUI the operator can
manually command the available agents or can trigger agents to complete tasks by applying them
autonomous behaviours. For the completion of these tasks, that require object recognition
techniques, advanced image processing methods were developed. The design and the
implementation of advanced tasks were possible after developing and completing successfully
smaller and simpler tasks. The GUI allows the intervention of the user applying semi-autonomous
behaviour for specific functionalities in order to help agents to successfully fulfil autonomous co-
operating tasks. Experimental results and measurements of this framework demonstrate that the
Rovios can successfully and efficiently complete the various tasks within a reasonable amount of

time meeting all the constraints that have been set.

CONTENTS

AABSTRACT ..ttt ettt e bt e bt steest e s tb e s bt e sheesbe e beea e e eab e eh e e eh e e eb £ e x b £ 2a b e es b e eh b e S E £ e Sh £ e AEe e ARt e AR e SRR e oA et AR e e eh e e ke e bt e R beeRbeeheeeheenheenbeennas 4
AACKNOWLEDGEMENTS ...t eutteuttettesttesteesbee et esteaeesaseaaeeabeesbe e beasbeesbeassesheeeheeehe e abe e bt emb e eabeeh e e eb e e ke e nbeenbeesbesbeesbeesbeesbeennas 3
L670] N =N 1 SRR PRSP 5
LIST OF FIGURES. ... ittt tete sttt st ettt sttt st sttt be st et sbe st e b e b et e be e bt e b e e bt e bt e b e e bt e b e e e b e e b e e e b e e b b et e ebe s ere et st e s e abe b erentins 8
LIS OF TAABLES ... tttettiteteteateteseste sttt s bbbttt et s et e e bbb e Rt b e e Rt b e e Rt E e bRt E e ke st E b e Rt e b bt e b e et e b e et b ne et 11

L INTRODUGCTION. ..o cttittittitite ettt sttt ettt st eb st e s e bt st e st ekt e st e bt b e e e b et et e b e et et et et et e st et et enenbees 12
00 R o)) [0 TR PP UPPPRTROTN 12
111 Tele-PreSenCe RODOLSciiiiiiiic bbb 12
112 Agent Interaction and CO-0PEFatiONeoiiriiriiirieiese bbb 13
113 o] 0T | AV] o] ISP 13

114 Y Tl o TN == Va1 o oSS 14

1.2 INSPIRATION ...ttt ettt sttt ettt s sk e ek e s bt e bt e se e eae e eh e e ab e e Rt e R e e s e e R e e e R e e abe e e b e e R e e nneemneameenbe e beenneenneenneas 14
121 0] o Yo BN TLY o (o 1 o TSSO 14
122 (== = - S 15

1.3 IMIOTIVATION ...ttt ettt ettt ettt ettt ekt e st e e st e e skt e e st e o2kt e e ab e e oAbt e e ab e e e skt e e mbe e e s bt e embe e s s bt e embeesbeeanbeeeteas 15
1.4 SCOPE OF THE PROJECT .uutiitiiitieitieiietiesitesieesteesteesteaste st e sbeesbeesbe e be e s beeseesseesbeesheeabeanbeambeaneesbeesbeenbeenbeenbesreeas 16
141 O ECTIVES ...ttt b bbb E bbb R bR bbbt et b e bttt nr e erennes 16

1.5 STRUCTURE OF DISSERTATION ...utiiutiitttsteesiessieesteasteaseeaseesseesseesseesseassessssssesssesssesssesssesssesnsessssssesssesssesssesssens 16

2 LITERATURE REVIEW......oiiiiiiii ittt bbbttt sttt bt ne et 18
2.1 RELATED WORK ...ttt ittt sttt ettt ettt sb e bt et e st eh e e b e bt e bt e bt e s et e b e e e b e e nRe e nb e e nneenneenneenrenne e e 18
2.1.1 THE RODOCUP. ...ttt sttt et st e st e be et e e s e e saesteesbeesbeenteanseassesasentaereeseeeneens 18
2.1.2 The Behaviour-Based APPIOACKHcciiiiiee ettt sra e be e ne s 20
213 Ball DeteCtion TEChNIGUESoveiiiteietiite ettt ettt e s 20
214 User INterfaces fOr RODOLSoiiiieece et ene s 22
215 NaVIGALioN AN SEIVOINGcciiiiieieiite bbbt b e et b et ee s 24

2.2 SUMMOARY ..ttt ettt et ettt et e tee s teeste e s te e eeameeea e e et e e bt e s bt esteeseeaE e e nE e e eEeen et eme e eR e e eR £ e Rt e EeenteeneeeReeeReenaeenaeenteenrennee e 26

S WOWWEE ROVIO ...tttk bbb st bttt e b b e st et e be et st e e ne bt ene et 27
3.1 IVLAIN FEATURES ...ttt ettt stttk t ettt b bbbt e st h e e b e e bt e bt e bt e ab e e R b e eb e e b e e bt et e e nb e s beesbeenbeenneens 27
3.2 FEATURES USEFUL IN THIS PROJECTcutieutieitieiiesiie sttt ettt ettt sie et ettt sse e sbeenbe e bt e enneennenne e 29
3.21 Wireless COMMUINICALIONcuiiiiiieceieieie ettt ene e e et e e seeseesneeneenes 29
322 F1eXiDIE ProgrammMingcoooieiie ettt b ettt bbb 29
3.2.3 OMNI-IreCtioNAl WREEISooieeieiieecee ettt sttt e e rentesrenreeneens 30

TR TS 1 OSSR 31

4 TELEPRESENCE AGENTS AND ARTIFICIAL INTELLIGENCEcccooiiiiiietceee e 32
4.1 INFRARED SENSORcuttiuttitttitteattesttesteestesstesteesbeesbeeabeaseeaaeeass e et s e eb e e bt e s beesbeeheeshe e abe e bt e bt emeeebbenbeenbeenbeenbeanneas 32
411 InfraRed Based Wander Algorithm for ONe AQENL..........c.ooiiiiiiiiiiieieere e e 32
41.2 InfraRed Based Wander Algorithm for TWO ROVIOS..........cccoiiiiiiiiiiiieree e 33

5

4.2 DIGITAL IMAGE PROCESSINGceiuttiteereereesiees st sieesmeesreesne s asssame e sneesneesne e e s e ssneaneesneesneenneenneanreannennee e 34

421 (070 (o] gl o] 11 LTSS PP PPRP 34
4.2.2 Image Processing MELhOUSccviiiiiicie sttt e et e b sresresneeneas 35
4221 L[0T =) Tox 1o o HO OSSPSR 35
A O (o) g I o1 ([T SO TSR PERSPSRP 36
4223 PINK BAII DEIECTIONcvviee ettt ettt bt r bbbt r et en s 38
4224 SegMENTING the TMAGE.cuiiiieieie ettt ettt et et et se et e b e bese et e e eneese e st ebesbesbeneenseseaneereene 39
4225 Dynamic Color RaNGE AJUSIMENTc..iiviiiieeitiie ettt ettt te st et sa et e e et e e eneens 40

4.3 SEARCH AND FIND PINK BALL ...oitiiititiiiiiieie sttt nn e nn s 44
4.4 ROVIOS BALL PLAY ...ttt ettt e st e e st e e st e e e e s n b e e e aatte e e e nteeeeasteeeesnseeeesnnneeanneeeeans 46
4.5 VISUAL SERVOING AND NAVIGATION SCENARIOuvveieiiiireeiiieeeesiteeeeasteeeessseeesssnsesesssssessssssssesssssssssssneeesns 47
4.6 POSITIONING SYSTEM . .uutiiiiitiee e ittt e sitteee e stteeessteeeesssteeesssteeeesaseeeeaasseeeessteeeeanseseeaneeeeeasseeeesseseesnseeeanssenensns 48
A7 SUMMARY ..ottt na bbbt bt e b b E e R b h et E R RS E R R R R Rt R e r e r e r e 48
5 IMPLEMENTATION ..ottt ettt s e h e bt e s bt e s bt et e e n b e eae e sb e e sbe et e e beesbeesbesbeesbeesbeenaeennas 49
5.1 OPEN.CV AND EMGU.CV ..ottt ettt nn e nn b ane s 49
5.2 GRAPHICAL USER INTERFACEcovititiitiitisieatiaieestete st st sse st e e sr e ab bt ehe e n et sn e sbe bt bt e e n et an e nnenneene s 49
521 L= o T TSP PRV R OROPRPVRTPRPRURON 49
5211 MENUBT CONEFOIS ...tttk bbb bbbt b et bbbt en s 50
5212 L] o1 S 1o OSSPSR 51
5.2.1.3 IR WANAET DULIONSeviiiiiiiieie ekttt bbbttt b et 52
5.2.1.4 Find Ball and MiSSION BULIONS..........couiuiiiieiiiiiieieieses st nnee e 53
5215 NOIMAl OPEFAtION BULLON.c.viuiiiiiiitiieteest ettt bbbkt b ettt ene s 55
5.2.1.6 PINK Dall TraCking BULONccuiiiieiiiiieisie sttt ettt sttt ettt n e e ne e 55
5217 Play With PINK Ball BUELON.coiiiiiiiieiiciieieie et bbbt 55
5.2.1.8 SEIECHING ROVIOS ...ttt bbb bbbt bbbkt b et bt 55
B5.2.1.9 SPEEA CONTION ...ttt etk h b et h bbbt bbb et e bt e bbbt eb e bt e et enas 56
5.2.1.10 Edge DEteCtiON PANELoiiieiiiiiiiitet ittt 56
5.2.1.11 SEYMENLING PANETociiiiiite ettt b bbbt b 58
5.2.1.12 Battery Monitoring PANE...... ..o bbbt b bbb 58
5.2.1.13 COlOr TraCKING PANEIotttk b bbbttt b et sb et et e b e b e 59
5.2.1.14 Circle detection and Dynamic Color Range Adjustment Panel..............ccoveiieiiiiinnciineiee e 62

5.2.2 L2 7SSOSR 66
5.3 THREADING ..etttitieteeseeste stttk sttt h bbb et et et b bt b e h e e e s st e e e Rt bt e bt e s e e n Rt e Rt bRt n e nn e r e neene s 66
5.4 SUMMARY ..ottt ettt r ettt ettt h bbb et et e e AR R e R R e R R R e R R R Rt Rt Rt Rt e n e ar e r e ene s 68
6 TESTING & EVALUATION. ...ttt bttt b et b e bt e bt e bt e beesb e s be e s beenbeenneennas 69
6.1 EXECUTION TIME.....titiitiiti ittt bbb bbbtk b e b b ettt sr e er e be b 69
6.1.1 EXeCUtioN TIME N TAD L ..o bbb et 69
6.1.1.1 INOFMAT EXECULION ...ttt bbbt bbbkt bbbt et e bbb s 69
6.1.1.2 EAQE DELECTION. ...ttt stttk b b et h bt bt bt s b e b e e n b e b e e bt e bt e b b e et e e e ene e 70
6.1.1.3 PINK TEACKINGttt bbbt b et b bbbttt b et b et ebe s 70
B.1.1.4 COlOF TFACKINGcuttetieiteniite ettt b bbbt b et bbbt b bttt b et nn e 71
6.1.1.5 CirCIE DELECTION ...ttt r et R et r ettt n e n et 72
6.1.2 TS | S 73

6.2 IR BASED WANDERINGceuttiteiateesreesrees s st re e me e sme e ame e ame e ne e e s e n s sme e nre e s n e e neamn e aneenneenneeneenennnens 75

6.3 FIND PINK AND YELLOW BALL ...titiiiiiiitiiieiiite ittt sttt sttt sttt st ettt se et sbe et sbe e b e 75
6.4 CHANGE AGENT THROUGH MISSION ...cctitiiiitiiieiistesiesestesteestestesestessesesseseesessessesessessesessessesessessesessessessssesses 81
6.5 PLAY WITH PINK BALL ..ttt sttt sttt sb et bbb sb et sttt st e e ebeneesenbeneas 82
6.6 VISUAL SERVOING AND NAVIGATION SCENARIOuietiiiiiiiiesieesieesieasteasseesesseesseesseesseessesssesssesssessesssesssessnes 83
6.7 FIND INEW BALL ..ottt ettt ettt sttt et a e e b e eb e ke ekt et e s bt e s he e s he e ebe e rbe et e enteanbeneee e 85
6.7.1 XD TMEINTS. ...ttt bbb e bbb R e bbb bbbttt b et 86
6.7.1.1 (L= L 11T L G SO S PP 86

6.7.1.2 (L= 1 11T L OSSPSR 88

6.7.1.3 EXPEIMENT 3.ttt ettt st et et e et et e b e b et et e e e asete e b e e b et et et enbebeebeebeete b e e et e e eneene e 89

6.7.2 RESUILS ...ttt bbbttt e Rt e et e Rt b b e R e Rt r e et et e e nbenneereenes 90

8.8 SUMMARY .ottt sttt ste ettt st et sttt be st st e b s e e bt e be e e e bt ek e e Rt b e R R e e R e R R e R e R R e Rt eR R e b e e Rt e b e e bt beebe e ebentes 92

7 DISCUSSION AND CONCLUSIONS ...ttt sttt sttt ene st nnene st 93
7.1 DISCUSSION ...ttt etttk ekt b e et e et e he e eh e e Rt e R e e Rt e b e e et e s e e s be e e Re e nb e e b e e nneenreennennee e 93
7.2 FUTURE RESEARCH AND IMPROVEMENTS......utiutiitteiieeiieesieesteaseeresssesseesseesteesesnesseessessnessneesnesnnesnnesnsesseeses 96
7.3 L670] N (o] W U] (0] TSRS 97

= 1= I L@ 2 Y N o o USSR 99
APPENDIX A — WINFORM APPLICATION CODE (VISUAL CH) .ocvovveeeieieese et 101
APPENDIX B — OPENCY METHODS ...ttt ettt sate st et e s s ae e snae e staeennaeesnaaennne e 159

LIST OF FIGURES

FIQUIE 1-1 RODOCUPD. ...ttt bbbttt et bbb b 15
Figure 2-1 Virtual RODOCUPDcvviiieeie ettt ta et este e aesraesteennesneenneenee s 19
Figure 2-2 Command Console and Mapping interface (Drury, et al., 2003).........cccccceviveveiiieieennne 22
Figure 2-3 CASTER interface (Kadous, et al., 2006)cccoiieriiiriieiieie e 23
Figure 2-4 The graphical user interface for HRI (Gopalakrishnan, et al., 2005)cccccocenirvrinnne. 24

Figure 2-5 Navigation scenario and execution of the vision algorithm displaying the mass centre
of the detected cone in the binary image (Begum, et al., 2010)..........cccecvevveviiiiereennns 25

Figure 2-6 Mapping the routes and the object-landmarks that the robot recognised
(Gopalakrishnan, et al., 2005).cccuiiiieiieie e e 26

Figure 3-1 Rovio™ and Charging dock with built-in TrueTrack™ Beacon (taken from WowWee
Group Limited, Rovio user’s manual, 2009)ccooiiiiiiiiiiiieiieee e 27

Figure 3-2 Rovio’s main features and Sensors (taken from WowWee Group Limited, Rovio

user’s Mmanual, 2009)ocviiiiiiii s 28
Figure 3-3 EXPEriMENTal SETUDoviiiiiiiiieieie bbb 29
Figure 3-4 Way of COMMUNICALIONcoiviiiiieiiee et re e 30
Figure 3-5 Omni-directional wheels of Rovio (taken from WowWee Group Limited, Rovio

user’s Mmanual, 2009)ocviiiiii s 30
Figure 4-1 InfraRed based simple wander algorithm............cccooeiiiiiei s 32
Figure 4-2 IR based wander algorithm for two ROVIOSc.cccoveiiiiiiieieccceese e 33
Figure 4-3 RGB, Grayscale and HSV COIOr SPACEScoiiiiiieiiiie e 35
Figure 4-4 Edge Detection using Canny OPEratir..........cccooeiiiirieieieniesesiesieseeeeee e 36

Figure 4-5 Yellow color range in HSV. From left to right, {25, 180, 180}, {30, 189, 189}, {35,
198, 198}, {40, 207, 207}, {45, 216, 216}, {50, 255, 255}, {60, 255, 255} and {43,
20D, 20D . ettt bt r et ettt et rens 37

Figure 4-6 Yellow Color Tracking. (a) BGR image, (b) HSV image, (c) Search color range in
HSV, (d) Smoothed, (e¢) Thresholded with Opening (erode-dilate) and Closing

(oL R cT T [PSPPSR 37
Figure 4-7 Blue Color Tracking. RGB and Binary imagecccceevieiii e 38
FIQUIE 4-8 HS PAIBLE ... bbbttt bbb 38
Figure 4-9 Pink Color Detection and mass Centre diSplay.........ccooevereieieniiinineeee s 39
Figure 4-10 Segmenting for n=4 (nxn=16 segments) and n=8 (NXN=64 segments)ccocevvr.... 40
FIQUIe 4-11 Circle DELECTION.ccuiiiie ettt e et et e e teeerne s 42
Figure 4-12 Centre and Radius display 0n ConSOIe...........cccooiiiiiiiieneseeeeee s 42

Figure 4-13 Sampling and Averaging neighbour pixels of the centreccccceeveviviivicicicceee 43

Figure 4-14 Last Average and Color range adjustment in HSV ... 43
Figure 4-15 Dynamic color detection and mass centre diSplayccoeeereriiinieicieie e 44
Figure 4-16 Detecting and CommMandiNg.........c.cciveiueiiieiieiisie e e e re e sre e sreenee s 44
Figure 4-17 Rovio playing With the ballccoi i 46
Figure 4-18 State transition for @aCh ROVIOcc.oouiiiiiiiiiiiieceee s 46
Figure 4-19 Sequence of actions for completing SCENArIOcccooeieiiiiiiiinieee s 47
Figure 4-20 Navigation result fOr SCENAIIO..........ccciiieiieiice e 47
FIQUIE 4-21 POSITIONINGctiiiiiiieitecie st e ettt e a et esta et e e st e s ae e aeeseesteenbeastesseesraeneesreenreeneeas 48
FIQUIE 5-1 TaD L.t b bbbt et e et bbb b 50
Figure 5-2 Manual Control State DIAGIaMcceoieriririiiiiee s 51
Figure 5-3 Manual Control PANEIScoooiiiiiece e 51
FIQUIE 5-4 StAtUS REPOITS. .. .ecuviivieiiecie ettt ettt et e et te et e et e s e e te e e e s be e beeseesseesreesesneenraeneeas 51
Figure 5-5 Get Report ACHIVILY DIAQIAMcviiiiiiiieiiere e 52
Figure 5-6 IR buttons ACHIVITY QIA0IaMcoiiiiiiieie s 52
Figure 5-7 “Mission 17”7 activity dIQZIAIMNcveierieiierieiiiie et 53
Figure 5-8 Current Rovio 1 button functionalities............cccooveiieiiiie i 54
Figure 5-9 PINK Ball traCKingcooiiiiiiiiiieee s 55
Figure 5-10 SElECt ROVIO 1 AN 2.....c.viiiiiiiiiciieieeee bbb 56
Figure 5-11 Edge Detection panel and manual adjustmentccccovveiieie i 57
Figure 5-12 Segmentation and trackbar (up: 25 segments, down: 9 segments)cccccveveeveieennnne 58
Figure 5-13 Battery MONITOTINGooviiuiiieiiiiieieiee ettt 58
Figure 5-14 Color tracking Panelcoo i s 59
Figure 5-15 BlIue Color traCKingcoveiieiiiii it re et ae e 59
Figure 5-16 Yellow COIOr traCking..........coovoiiiiiiiicc e 60
Figure 5-17 DeteCt BVEIYINING ...c..oiviiiiiiei e 60
Figure 5-18 Narrowing the HSV FaNGE........couiiiiiiiieiere e 61
Figure 5-19 AdJuStiNg the FANQJEcviiieiece e re e sae e 61
Figure 5-20 Circle DeteCtion PANEl..........c.oiiiiii e 62
Figure 5-21 Pixels used in the color aVEraging.........cccooiiiiiiiieiieiese e s 63
Figure 5-22 One, two, three and more circle deteCtion.............ccevveieiiieii e 63
FIgQUre 5-23 Ball QELECLION.......cuiiiiieiie ettt e e e e et e e e saee e 64
Figure 5-24 Importance of parameters in detecting the ballcccooiiiiiii i 64
Figure 5-25 Adjust manually the FaNQE..........uoiiiii s 65
Figure 5-26 FINd the NEW DAlooiiiiie s 65

1o U A A IF- o 1SRRI 66

Figure 5-28 Threads iN TaD L.......ooiiii et 67
Figure 5-29 Threads iN TaD 2. s 67
Figure 6-1 Default parameters for Circle DeteCtioncccviiveiiiieiiieii e 72
Figure 6-2 Altered parameters for Circle DeteCtioncccvieeiiiieiieeieee e 72
Figure 6-3 FPS comparison between ROVIO 1 and 2..........cccoiiiiiieiineieseieseseeeeee s 73
Figure 6-4 Average Execution Time (ROVIO 1)ccuoiiiiiiiiiiiieieeee s 74
Figure 6-5 Average Frames Per SECONd (ROVIO 1)ccoveiiiiieiieie e 74
Figure 6-6 IR DaSed WANUEIINGcviiieieeie ettt e e re et esteestesreesreenaesneesneeneeas 75
Figure 6-7 View from docked Rovio 5 (find pink Dall)ccoiiiiniiii 76
Figure 6-8 Find Pink Ball (Rovio 5 — Line of SIgNt).......cccccoiiiiiiiiiceeee e 77
Figure 6-9 View from docked Rovio 1 (find pink ball).........c.ccooeiiiiiiiei e 78
Figure 6-10 Find pink ball (Rovio 1 — Non-line of Sight).........cccccciiiiieiic e 79
Figure 6-11 View from docked Rovio 1 (find yellow ball) ... 80
Figure 6-12 Find Yellow ball (Rovio 1 — Non-line of Sight)cccooiiiiiniiiii 81
Figure 6-13 Find pink ball, SWapping agentS.........cccecieiieiiiieie e 82
Figure 6-14 Play with the pink Dall.............cccoooiiiii e 83
Figure 6-15 IMISSION 1 (PAIT 1) ...cuveiiiiiiiiiiieieeie ettt bbb enes 84
Figure 6-16 IMiISSION 1 (PAIT 2) ..c.vovieiiiiiieiieieeie ettt bbb bbb 85
Figure 6-17 Target IOCKEM.........cvoiiie e re et sre e 86
Figure 6-18 Threshold adjusted and Centre and Radius Displayed............ccccccevvveieiiieieenecicieenne 86
Figure 6-19 Sampling the COLOToouiiiiii s 86
Figure 6-20 Checking the result of the automated color range adjustmentccccceevverencncnenn 87
Figure 6-21 FiNd NeW DAlc.ooiiee e 88
Figure 6-22 Checking the result of the automated color range adjustment after the light condition
CRANGING .t b e bbbt b ettt bbbt are s 89
Figure 6-23 Checking the result of the automated color range adjustment after turning off all the
lIGhtS IN ThE FOOM ..o 89
Figure 6-24 Different light conditions for the experiment (top: Experiment 1, middle:
Experiment 2, bottom: EXPEriMent 3)........cccoiiiiiiiiiiiie e 90
Figure 6-25 Hue range in the three eXPerimentS.........coooiiiiiiienieiese et 91
Figure 6-26 Saturation range in the three eXpPerimentsS........ccccocveiiiiiic e 91
Figure 6-27 Value range in the three eXperimentS..........cccveive e 91

10

LIST OF TABLES

Table 3-1 Rovios and correSponaing IPSc.ooiiiiiiiiiiieeere s 27
Table 6-1 Average ET and FPS in normal MOdecccooveviiiiiieieece e 69
Table 6-2 Average ET and FPS in default edge detectioncccceeveve e 70
Table 6-3 Average ET and FPS while tracking Pinkcccooviiriiiiinn e 70
Table 6-4 Average ET and FPS while tracking COIOrS..........cocviiiiiiiiieiieeccee e 71
Table 6-5 Average ET and FPS in default circle detection...........ccceevvviiiiniiiinencce e 72
Table 6-6 Average ET and FPS in altered circle detectionccceeveveivevecceseecc e 72
Table 6-7 Rovio 5 find pink ball measurements (line of Sight)ccccoeiiveiiiiciccc e, 76
Table 6-8 Rovio 1 find pink ball measurements (non-line of Sight)ccoccveiiiiiniii e 78
Table 6-9 Rovio 1 find yellow ball measurements (non-line of Sight)cccceveviiiniiiinnn. 80
Table 6-10 HSV Color Ranges in the three eXperimentscccoveieeieieere s 90

11

1

INTRODUCTION

1.1 Torics

1.1.1 TELE-PRESENCE ROBOTS

It is stated that an agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors (Norvig, et al., 1995). A human agent
has eyes, ears and other organs for sensors while a robotic agent has cameras and infrared sensors.
The effectors for a human are the various body parts and for the robotic agent the motors.

The term “telepresence robot” encompasses a wide range of robots, which vary with respect to
mobility, size and capabilities. A set of guidelines has been suggested that is believed that are
essential for all telepresence agents (Holly, et al., 2011). These guidelines are not merely a list of

desirable features, but, rather, they constitute an essential set of features that must be incorporated

in telepresence robots.

o Video information is critical in telepresence robots for conversation and navigation.

Due to the mobility afforded by these robots, the information must be transferred wirelessly.
Video streams constitute a significant portion of the transferred data and can be adversely
affected by the network connection.

o Audio quality is most important component of communicating through a

telepresence robot is the conversation itself. The audio quality must be comparable to that of
a landline phone conversation.

o The user interface is a critical component of the telepresence system. It is the

driver’s portal to the remote world. The Ul must be simple, easy to use, not distracting, and
provide the necessary functionality without overwhelming the driver. User interfaces for
controlling remote robots have been well researched (Drury, et al., 2010).

. Physical features:

o Robot height: Ideally, the driver should be able to change the robot’s height
to any desired length remotely.

o Robot speed: The robots should be able to move at average human walking
speeds of about 3 miles per hour.

o Wide field of view: The front facing camera must have a wide field of view
(FOV). A wide FOV is essential during navigation because it provides the
driver with better situation awareness.

o A head that could pan and/or tilt.
12

o Access point switching: As robots move around, they have to switch access
points. Depending on the environment, there can be multiple access points
that the robot might have to connect to while moving.

o Autonomous navigation behaviours are desirable because of safety reasons and for

ease of use. For instance, a remote driver may see in their video feed a person exiting a
conference room and stop so the person can pass in front of the robot. Under teleoperation,
the robot may or may not stop in time, depending on the delay given the robot’s video feed
to the driver and then the navigation command back to the robot. Processing the sensor data
locally allows the robot to take immediate action, thereby providing a tighter closed loop
control of the robot. Hence, autonomous behaviours allow for better control of the robot
under varying network conditions.

o Social considerations. The previous guidelines provide the technical and functional

competence of a telepresence robot. Social acceptance will also be required for long-term

acceptance.

The WowWee Rovios that have been used for the implementations of this project are
commercially available telepresence robotic agents.

1.1.2 AGENT INTERACTION AND CO-OPERATION

Interaction is another concept that concerns us. Typically, interaction is viewed as any influence
that affects an agent's behaviour. By this definition, an agent interacts with everything it can sense
or be affected by, since all of its external and internal state can have an impact on its actions
(Mataric, 1994).

Cooperation is a form of interaction, usually based on communication. Certain types of
cooperative behaviour depend on communication. Specifically, any cooperative behaviour that
requires negotiation between agents depends on directed communication in order to assign
particular tasks to the participants.

1.1.3 RoBOT VISION

This project is greatly concerned with robot vision. Although vision is effortless for humans,
it has been proven to be a very difficult problem for machines. Major sources of difficulty include
variable and uncontrolled illumination, shadows, complex and hard-to-describe objects such as
those that occur in the natural environments. These difficulties are reduced in man-made
environments such as the interior of a building or an office. Computer vision in these places has
been proven to be much more successful (Nilsson, 1998).

13

It is stated that the goal of computer vision research is to provide computers with human like
perception capabilities so that they can sense the environment, understand the sensed data, take
appropriate actions, and learn from this experience in order to enhance future performance
(Ashutosh, et al., 2005).

Navigation, target recognition, manufacturing, photo interpretation or remote sensing are real
world applications which require vision algorithms and systems to work under partial occlusion,
possibly under high clutter, low contrast, and changing environmental conditions. This requires that
the vision techniques should be robust and flexible to optimize performance in a given scenario
(Ashutosh, et al., 2005).

1.1.4 MACHINE LEARNING

Machine Learning is an area of Artificial Intelligence which aims to develop techniques allowing
machines to “learn”. Thus Machine Learning is interested in finding possible methods to make
computers using experience to act more rationally than if they didn’t have any knowledge of the
past. Acting rationally is acting in order to achieve the best outcome or the best expected outcome,
if there is uncertainty. Finally, the field of machine learning is driven by the idea that computer

algorithms and systems can improve their own performance with time.
1.2 INSPIRATION

The previous chapters explained the main topics that this project is concerned about. The
following two examples are works and implementations worldwide known which inspired me to

study and investigate fields like Artificial Intelligence and Robotics.
1.2.1 RoBoT WoORLD Cup

The Robot World Cup Initiative is an attempt to foster Al and intelligent robotics research by
providing a standard problem where wide range of technologies can be integrated and examined.
The first RoboCup was held in Nagoya at 1997. In order for a robot team to perform a soccer game
technologies like autonomous agents, multi-agent collaboration, strategy acquisition, real time
reasoning, robotics and sensor fusion have to be incorporated (Asada, et al., 1997). Exceptionally
interesting is the main goal of the RoboCup, which is stated in the original RoboCup website,:

“By mid-21st century, a team of fully autonomous humanoid robot soccer players shall win the
soccer game, comply with the official rule of the FIFA, against the winner of the most recent World

2

Cup.

14

Figure 1-1 RoboCup

Figure 1-1 shows some robots in action during RoboCup. As you can see there are different
kinds and sizes of robots which result in different categories of competing. The main categories are

Humanoid, Middle Size, Simulation, Small Size and Standard Platform.
1.2.2 DEEP BLUE

Deep Blue is the chess playing machine which defeated World Chess Champion Garry Kasparov
during their 1997 Rematch. Deep Blue started as Chiptest at Carnegie Mellon University and by the
time that won Kasparov was the top IBM research project. In 1989 IBM recruited three Carnegie
Mellon University Ph.D. graduates to create a chess playing computer that would outlay the best
human on planet Earth.

It is identified as a monumental triumph, ranking as one of the great technological achievements
of the 20™ century (Newborn, 2004) and pushed Artificial Intelligence in higher levels.

The challenge of this attempt is obvious by recalling that in the typical chess position there are
approximately 30 moves. To each of these 30 moves, there are 30 approximately replies, leading to
900 different positions after one move by each side. Rounding the number to 1000, to make the
calculations simpler, we find out that looking two movements ahead by each side leads to about
1000 times 1000, or about 1,000,000 positions. To play chess at the level of a world champion the
computer has to be able to look 12 positions ahead which correspond to an incredible
1,000,000,000,000,000,000 positions. Moreover, the computer has to search many of these

positions deeper in order to follow tactical variations (Newborn, 2004).
1.3 MOTIVATION

The previous chapters explained the basic principles of the domains that this project is about.
Trying to understand how multi-agent systems co-operate and interact is a very interesting domain
which is gradually gaining popularity assisting people in their daily and labour life.

On a practical point of view, building a framework of co-operating agents, even with simple and
basic behaviours, uncovers practical problems during the implementations. Data transmission,
quality of connection and programming methods are some of them.

15

From a theoretical point of view, studying the behaviour of co-operating agents and their
responses in a dynamic environment leads in developing more robust multi-agent co-operating
frameworks. From the other side, the exploration of methods in computer vision helps us
understand the current problems and also what lies ahead. Machine learning and human-robot
interaction creates semi-autonomous frameworks which will gradually become completely

autonomous.
1.4 SCOPE OF THE PROJECT

The main scope of this project is to build an autonomous, co-operative tele-robotic agent

framework for WowWee Rovio’s.
1.4.1 OBJECTIVES

Analysing the scope deeper down, six basic objectives can be distinguished:

1. Study the WowWee Rovio’s autonomous behaviour.
2. Build an interface for the WowWee Rovio to communicate to an external party

and/or other Rovio’s.
Achieve a basic function of autonomous exploration in unfamiliar environments.

4. Use of advanced image processing algorithms to identify and describe objects within
unfamiliar environments.

5. Coding a knowledge base to store the robot’s experience.

6. Achieve basic communication and co-operation between at least two robotic agents.
1.5 STRUCTURE OF DISSERTATION

Chapter 1 presented the main areas that this project is concerned. Also, two projects were
presented that inspired and motivated me to complete this work. Finally, the main aim and
objectives of this dissertation were given.

Chapter 2 presents related works that lead the described areas of the introductory chapter.

Chapter 3 describes the main characteristics and features of the Rovios and focuses on those that
were useful to this project.

Chapter 4 presents and describes the methods and the techniques that were explored and
implemented in this framework for the Rovios.

Chapter 5 shows the implementations and the way that they were developed, describing at the
same time their characteristics and abilities.

Chapter 6 tests and evaluates the various methods that were developed in this project.

16

Chapter 7 concludes discussing the results and the effectiveness of the previously described

methods.

17

2 LITERATURE REVIEW

2.1 RELATED WORK

In the first chapter the main areas that are related to this project were presented; Tele-presence ,
Agent Interaction and Co-operation, Robot Vision and Machine Learning. Related work that leads

these areas of interest is presented below.
2.1.1 THE RoBoCur

The RoboCup competition (Asada, et al., 1997) combines all the above described areas. The
robots are wirelessly interacting and co-operating to succeed their goal. Furthermore, a good
strategy has to be implemented and followed by them. In this case they are trying to score against
the other team of robots. Robot vision and motor control are also very critical in their performance
as they have to recognise the ball (usually an orange ball), the borders of the field and the area of
the goalpost then position themselves accordingly around the ball and finally “kick” the ball
successfully in the right direction. Another important parameter is the environment where they have
to act. The environment continuously changes as the robots and the ball change positions on the
field.

There are several different competing categories. The standard platform league teams use
identical (standard) robots. Therefore, the teams concentrate on software development only, while
still use state-of-the-art robots, as it happen in this project. We are not concerned on the hardware
but just on the method development. This gives us the opportunity to focus on the development and
testing methods using more than one agent.

This league replaced the highly successful four-legged league, based on Sony’s AIBO dog
robots, and is now based on Aldebaran’s Nao humanoids.

The RoboCup competition has two leagues, the “real” and the “virtual” simulation league. In
RoboCup’s “virtual” competition, players are not robots but computer programs which manipulate
virtual robots through RoboCup’s provided simulator, the RoboCup Soccer Server (Itsuki, 1995).
The Soccer Server provides a simulator environment with complex dynamics, noisy and limited
sensor information, noisy control, and real-time play (Figure 2-1). To win a soccer match in the
Soccer Server, players must overcome these issues and cooperate as a team in the face of limited
communication ability and an incomplete world-view (Farris, et al., 1998).

It has been suggested that genetic programming is a promising new method for automatically

generating functions and algorithms through natural selection (Farris, et al., 1998). In contrast to

18

other learning methods, genetic programming’s automatic programming makes it a natural approach

for developing algorithmic robot behaviours.

OxBlue08 4 goal_| 5629

Figure 2-1 Virtual RoboCup

Farris et al., (1998) studies the evolution of the behaviours of the virtual agents and says that one
of the benefits of working with evolutionary computation is being able to watch the population
learn. It is also stated that their initial random teams consisted primarily of players which wandered
aimlessly, spun in place, stared at the ball, or chased after teammates. Early populations produced
all sorts of bizarre strategies. The “kiddie-soccer” was a problematic strategy where everyone on the
team would go after the ball and try to kick it into the goal. After a number of generations, the
population as a whole began to develop rudimentary defensive ability. Eventually teams began to
disperse players throughout the field and to pass to teammates when appropriate instead of kicking
straight to the goal.

Salustowicz et al., (1998) simulated soccer to study multiagent learning. Each agent shares
action set and policy, but may behave differently due to position-dependent inputs. The agents of
the same team are punished or rewarded in case of goals. They conducted simulations with varying
team sizes and compared several learning algorithms. The main algorithms that were tested were
the TD-Q learning with linear neural networks, Probabilistic Incremental Program Evolution (PIPE)
and a PIPE version which learns by coevolution (CO-PIPE). TD-Q is based on learning evaluation
functions (EFs) mapping input/action pairs to expected reward. PIPE and CO-PIPE search policy
space directly. The result of the simulations showed that PIPE and CO-PIPE learn faster than linear
TD-Q and continuously increased their performance. This suggests that PIPE-like, EF-independent
techniques can easily be applied to complex multiagent learning scenarios with policy shared
agents, while more sophisticated and time consuming EF-based approaches may be necessary to
overcome TD-Q’s current problem (Salustowicz, et al., 1998).

19

Stone and Veloso (1998) introduce the level layered behaviour. They describe two levels of
learned behaviours. First, the clients learn a low-level individual skill that allows them to control
the ball effectively. Then, using this learned skill, they learn a higher level skill that involves
multiple players. The kicking of the ball by an agent is a low level skill which is a prerequisite to
more complicated behaviours. This skill is a form of simple Multiagent Learning. Such an action
makes sense only in an environment where more agents co-exist and co-operate. Extending this
behaviour to passing the ball to another teammate, they finally implemented a set of play involving

several players and several uses of the learned behaviours (Stone, et al., 1998).
2.1.2 THE BEHAVIOUR-BASED APPROACH

Behaviour is a reaction to a stimulus. Arkin (1998) suggests that this pragmatic view enables us
to express how a robot should interact with its environment. The reactive robotic systems have the

following characteristics (according to (Arkin, 1998)):

o Behaviours serve as the basic building blocks for robotic actions.

o Use of explicit abstract representation knowledge is avoided in the generation of a
response.

o Animal models of behaviour often serve as a basis for these systems.

o These systems are inherently modular from a software design perspective.

2.1.3 BALL DETECTION TECHNIQUES

Ball recognition is one of the most important and crucial tasks that the participant robots have to
fulfil in RoboCup. Except from RoboCup, implementing a ball recognition method helps us to
investigate the behaviour of multiple co-operating robots.

Many researchers are developing new techniques for ball detection for various environmental
and lighting. Eventually the ball detection algorithms can either focus on a specific color search
which is contrasting the general background and/or on circular shape detection.

A method for detecting and tracking the ball in a RoboCup scenario without the need for color
information is being suggested in (Masselli, et al., 2004). They use Haar-like features trained by an
adaboost algorithm to get a colorless representation of the ball. Tracking is performed by a particle
filter and It is shown that the algorithm is able to track the ball in real-time with 25 fps even in a
cluttered environment.

In their paper (Frintrop, et al., 2005), a new combination of a biologically inspired attention
system (VOCUS - Visual Object detection with a CompUtational attention System) with a robust
object detection method is presented. As an application, they built a reliable system for ball

20

recognition in the RoboCup context. Firstly, VOCUS finds regions of interest generating a
hypothesis for possible locations of the ball. Secondly, a fast classifier verifies the hypothesis by
detecting balls at regions of interest. The combination of both approaches makes the system highly
robust and eliminates false detections. Furthermore, the system is quickly adaptable to balls in
different scenarios: the complex classifier is universally applicable to balls in every context and the
attention system improves the performance by learning scenario-specific features quickly from only
a few training examples.

In (Bach , et al., 2005), they selected a simple pattern matching strategy to find ball candidates.
The color of the ball in RoboCup is known, so, a single orange pixel was said to be a candidate for a
ball. The ball identificator works in two steps: The first step tries to find a point near the centre of
the visible part of the ball. The second step starts from the point obtained by step one to scan into
eight directions for a transition from orange to green, white, sky-blue or yellow. If such a transition
is found, the point where the transition takes place is marked as a candidate to lie on the outline of
the ball. A transition from orange to another color stops the scanning process in that direction, and
the point is not marked, because it is likely to signify a partly occluded edge of the ball. Finally,
they succeed a rate of 25 fps without down-scaling the original image.

Martins et al. (2006) proposes a solution to detect standard FIFA balls, independent of their
color, in the context of the RoboCup Middle Size League. The proposed approach is based on the
use of an edge detection algorithm followed by the use of the circular Hough transform. Three edge
detection operators were used in this experiment, Canny, Sobel and Laplace. Their experimental
results show that the Canny edge detector is the best choice among the other edge detection
algorithms, considering the blur effect resulting from the movement of the ball. Additionally, the
Hough transform revealed to be a good method to detect circular shaped objects, and showed to be
very tolerant to gaps in feature boundary descriptions and is relatively unaffected by image noise.

Another ball detection algorithm based on color information and Hough transform is being
presented in (Zhang, et al., 2009). The Retinex algorithm is first applied to enhance the image.
Then, an adaptive Hough transform is introduced to locate the position of the balls in order to
reduce the influence of the complex environments. Thirdly, to detect the interested balls under
different illumination conditions, a color invariant model Grayworld Normalization is introduced to
overcome the influence of the illumination. The accuracy of this method is found to be 80.3%. The
detection of some interested balls fails because the illumination conditions are so extreme that

makes the ball to lose the color information.

21

2.1.4 USER INTERFACES FOR ROBOTS

The interface between the user and the robot is a crucial factor in the success of their mission.
Human and robot must co-operate, especially when the human operator and the robot are in remote
places, in an easy and effective way. The operator must be aware of the robot’s condition, state and
features in order to be helpful in case of any possible collision.

Drury et al. (2010) suggest that remote robot interfaces can be partitioned into two categories:
map-centric and video-centric. A map centric interface is an interface in which the map is the most
predominant feature in the interface and most of the frequently used information is clustered on or
near the map. Similarly, in a video-centric interface, the video window is the most predominant
feature with the most important information located on or around the video screen.

MITRE Corporation developed a map-centric interface (Figure 2-2) which can involve up to
three robots to map the area that the robots cover. The upper part of the interface was a map which
was updated from the information that the robots were providing. The interface also had the ability
to switch operator driving controls among the three robots. Also, small video windows from the
robots appeared under the map. The main disadvantages of this interface are the slow rate of

updates and the small size of the video screen (Drury, et al., 2003).

drawing took: Gisplay options map axea

NAOOENE R /

i

Jo|F

;S,:G._ g
| |
L2020
li.
\‘
i1
P

Figure 2-2 Command Console and Mapping interface (Drury, et al., 2003)

ARGOS from Brno University of Technology is an excellent example of a video-centric
interface (Zalud, 2006).

The CASTER interface (Figure 2-3) developed at the University of New South Wales (Kadous,
et al., 2006) also provides a full screen video interface but incorporates a different arrangement of
small sensor feeds and status readouts placed around the edges. This human-robot interface was
deployed by Team CASualty in the 2005 RoboCup Rescue Robot League competition. Some of the
unique characteristics of CASTER interface are overlays of different sensors such as thermal

cameras, integration of victim and landmark placement in 3D, use of 3D direction indicators for a
22

more consistent user experience, the use of hotkeys for camera placement, the display of
accelerometer data, the addition of the auxiliary cameras, and doing away with numbers and text on
the display altogether.

Figure 2-3 CASTER interface (Kadous, et al., 2006)

The GUI in Figure 2-4 was built and used by Gopalakrishnan et al., (2005) for their research.
From this interface the user can access sonar and laser range data and live camera images and can
manually control the robot and camera head. When an object of interest appears on live images, the
user clicks on it in the video screen. Then the object is centered and zoomed for better view. After
that, the automatic object recognition system is activated to recognize the object. If the robot cannot
recognize the object, it directly asks the user for help. Speech synthesize (text-to-speech) is used for
this purpose. The robot then uses its speech recognition capability to recognize what the user says.

23

B3 Fie subfom

Human Robot Conyeisation

Camera Control
Robot says
| found the dooe
Odometry Readings
Start Odometer Reset Odometer
Commander says
100013 904 [-01
Send |
‘ Laser Contiols
i Robot Controls
N TR { Laser Connect Laser Disconnect
, S—
(-~
Connect] Dizconnect I ; o_'_
| Localize
Enable Disable }
Motots Motors —_

Figure 2-4 The graphical user interface for HRI (Gopalakrishnan, et al., 2005)

2.1.5 NAVIGATION AND SERVOING

One of the principal uses of vision is to provide information for manipulating objects as well as
navigating in a scene while avoiding obstacles. Mobile robots moving around in an environment
need to know where the obstacles are and where the free space corridors are available.

Russell and Norvig (1995) identify five major classes of algorithms of navigation and motion
planning, and arrange them roughly in order of amount of information required at planning time and

execution time:

o Cell decomposition methods break continuous space into a finite number of cells,
yielding a discrete search problem.

o Skeletonization methods compute a one dimensional “skeleton” of the configuration
space, yielding an equivalent graph search problem.

o Bounded-error planning methods assume bounds on sensors and actuator
uncertainty and in some cases can compute plans that are guaranteed to succeed even in the
face of severe actuator error.

24

o Landmark-based navigation methods assume that there are some regions in which

the robot’s location can be pinpointed using landmarks, whereas outside those regions it

may have only orientation information.

o Online algorithms assume that the environment is completely unknown initially,

although most assume some form of accurate position sensor.

A simple visual servoing and navigation algorithm for guiding a holonomic or omnidirectional

robot based on landmarks is presented in (Begum, et al., 2010). The algorithm facilitates a mobile

robot equipped mainly with a webcam to autonomously navigate an unknown environment and

explore the path from start configuration to goal configuration along some checkpoints (landmarks)

while avoiding obstacles. For their experiments they used the same robotic platform, the WowWee

Rovio.

The logic of their vision algorithm is described below (also in Figure 2-5):

1. Detect red or green cones in image taken by the robot.

2. Convert the image into binary image where the detected cones are represented by
regions of white pixels.

3. Bound the white regions by rectangles.

4. Calculate the areas of those rectangles and select the closest cone by simply taking the
rectangle having largest area.

5. Find the centre of mass of selected region.

6. Find the state derived from the information of area, centre of the largest rectangle and
presence of white pixel regions in the binary image.

7. Return the state that represents the position of the red or green cone in the environment
with respect to robot viewpoint.

Figure 2-5 Navigation scenario and execution of the vision algorithm displaying the mass centre of the

detected cone in the binary image (Begum, et al., 2010).

25

Figure 2-5 sketches the implemented scenario. Two green cones indicate the starting point while
the red cones represent intermediate checkpoints/landmarks. The robot starts when it recognises a
green cone. After that searches for red cones and moves towards the closest. Following the red
cones it is finally stops when it reaches the ending green cone.

Gopalakrishnan et al. (2005) develop a vision-based learning mechanism for semi-autonomous
mobile robot navigation. Laser-based localization, vision-based object detection and recognition,
and route-based navigation techniques for a mobile robot have been integrated. Initially, the robot
can localize itself in an indoor environment with its laser range finder. Additionally, a user can
teleoperate the robot and point the objects of interest via a graphical user interface. Here the robot is
semi-learning (automatically or with the help of the user) about landmarks and can navigate in a
partially known environment (Figure 2-6).

Figure 2-6 Mapping the routes and the object-landmarks that the robot recognised (Gopalakrishnan,
et al., 2005).

2.2 SUMMARY

This chapter presented a summary of the relevant work in the different areas of research linked
to the problem that has been chosen, and showed the importance of digital image processing and
other sensors in creating a framework for autonomous co-operative agents in dynamic and
unfamiliar environments.

The following chapter will present Rovio’s main characteristics and which of them played a

significant role in this project’s methods and implementations.

26

3 WOowWWEE RoviIO

Rovio is the Wi-Fi equipped mobile webcam that enables you to view and interact with its

environment through live streaming video and audio with its built-in camera.
3.1 MAIN FEATURES

After setting Rovio and giving it a specific IP address you can access the web user interface by
typing this IP on any browser. Through this interface you can manually control Rovio while you are
getting the MJPEG steam from his built-in camera. Furthermore, you can record new paths and then
it can play back these paths using the TrueTrack™ Navigation System. Rovio is checking the level

of the battery and when it detects that the level is too low it can navigate back to its charging base.

Figure 3-1 Rovio™ and Charging dock with built-in TrueTrack™ Beacon (taken from WowWee
Group Limited, Rovio user’s manual, 2009)

Figure 3-2 shows in greater detail the features of the WowWee’s agent.

The USB connector is used basically to set up Rovio for the first time and adds it to the local
wireless network. More than one Rovios can be connected. A different access IP is given each time
that one Rovio is being set up. This project uses five Rovios. The number of the Rovios and their

correspondent IPs are shown in Table 3-1.

Table 3-1 Rovios and corresponding IPs

Name IP address
Rovio 1 http://192.168.2.11
Rovio 2 http://192.168.2.12
Rovio 3 http://192.168.2.14
Rovio 4 http://192.168.2.15
Rovio 5 http://192.168.2.16

27

The power button has a LED which indicates the current network connection and battery status
of the current agent.

The neck of the agent can be in three positions (normal/down, mid and high). This characteristic
makes Rovio more playful and at the same time allows the developer to use his creativity and
implement in Rovio algorithms and methods like face detection or gesture recognition.

An antenna is an appropriate component for a wireless device like Rovio.

Microphone can be extremely useful especially in Speech Recognition applications.

The six blue LED indicators can be adjusted and also their brightness indicates if Rovio is
charging or not when it is docked.

The IR sensor is used mainly for object avoidance. It is one of the main characteristics of the
agent and its use will be analysed later on.

The built-in camera and stream of Jpeg images play a crucial role in the developed methods,
mainly because these methods are based on image processing algorithms.

Finally, the omni-directional wheels allow movement in all directions and add characteristics in
Rovio’s kinetics like rotation and spinning.

USB connector

Neck

Power button with
LED power indicator

I_ Antenna

TrueTrack sensor

Microphone

Camera

IR sensors LED indicators

Headlight

Omni-directional

Speaker wheels

Figure 3-2 Rovio’s main features and Sensors (taken from WowWee Group Limited, Rovio user’s
manual, 2009)

28

3.2 FEATURES USEFUL IN THIS PROJECT

Characteristics of this off-the-shelf toy robot are being presented in this sub-chapter that were

useful in this project.
3.2.1 WIRELESS COMMUNICATION

The way that the robot communicates with an external application can be understood by studying
Rovio’s API and the existing Rovio web interface. Rovio is taking its command through the
Uniform Resource Locator (URL) string using the Hypertext Transfer Protocol (HTTP). The
wireless communication makes use of the 802.11b/g protocols (Figure 3-3 and Figure 3-4).

Wireless Communication Link

Vision and Sensor
Data
Commands Commands

Rovio’s status

PC AMD Athlon ™, +3700, 2.21GHz
2 GB of RAM ARMS RISC processor (200MHz) ,
open source eCos OS on 8MB RAM
and 2MB flash

Figure 3-3 Experimental setup

3.2.2 FLEXIBLE PROGRAMMING

Rovio can be controlled by sending HTTP commands to a web server hosted on the robot
(Figure 3-4). This allows controlling the robot using the sensors that the robot has and building Al
algorithms without worrying about hardware configurations, setup and interfacing in high level
programming language. All the methods and algorithms have been programmed in Visual C# in
Visual Studio 2008 which operates in Windows XP on a +3700 AMD Athlon 2.21GHz PC. The
proposed techniques implemented web based Rovio API v.1.3. Finally, the Open Source Computer

Vision libraries (v.2.1) were used for the image processing part of the project.

29

Novio 5

Rovio 4

Rovio 1 Rovio 2

Figure 3-4 Way of Communication

3.2.3 OMNI-DIRECTIONAL WHEELS

The omni-directional mobile robot systems have been popularly employed in several
applications, particularly in the area of military services and surveillance and space exploration
because of its capability to drive in all directions. Intensive research works on holonomic mobile
robot systems have drawn much attention over two decades. Omnidirectional vehicles have great
advantages over conventional (non-holonomic) platforms, with car-like Ackerman steering or
differential drive system, for moving in tight areas. They can crab sideways, turn on the spot, and
follow complex trajectories. These robots are capable of easily performing tasks in environments
with static and dynamic obstacles and narrow aisles (Kim, et al., 2000) (Begum, et al., 2010).

Thanks to its special wheels Rovio is able to move on any direction, forward/backward but also
sideways left/right, and turning on the spot (Figure 3-5). This is especially helpful when having to

manoeuvre in a tight environment such as the man-made room.

Omni-directional
wheels

Figure 3-5 Omni-directional wheels of Rovio (taken from WowWee Group Limited, Rovio user’s
manual, 2009)

The holonomic feature of Rovio greatly simplifies the navigation problem.
30

3.3 SUMMARY

This chapter discussed the main features of Rovio and explained why this off-the-shelf toy can
be useful in projects like this one that explores the areas of Machine Learning, Machine Vision and
Agent Interaction and Co-operation.

The next chapter will describe the logic and the techniques that were used in this project.

31

4 TELEPRESENCE AGENTS AND ARTIFICIAL

INTELLIGENCE

4.1 INFRARED SENSOR

4.1.1 INFRARED BASED WANDER ALGORITHM FOR ONE AGENT

Using the build-in InfraRed sensors of the Rovio which are placed below its “head”, it is easy to
create a simple and robust algorithm of wandering around the room avoiding obstacles. This
behaviour can also be disrupted from the presence of a human in the room. Therefore, the status of
the IR sensor is constantly requested. When the sensor detects an obstacle, the agent stops and
rotates searching for a way without obstacles, when it finds a clear view it continues moving
forward (Figure 4-1). Finally, Rovio’s IR sensor senses objects from the distance of approximately

1 meter.

| e

Figure 4-1 InfraRed based simple wander algorithm

The algorithm in pseudocode is as follows:

Wander_Rovio()

1. Read status of IR detector
2. if IR doesn’t detect object
3. move forward

4. else

32

5. rotate anti-clockwise for 10 degrees

This function is inside an infinite while (true) loop.
4.1.2 INFRARED BASED WANDER ALGORITHM FOR TWO ROVIOS

In addition to the simple wander algorithm for one Rovio, a wander algorithm for two Rovios
has been created. The simplicity of this algorithm is again the main characteristic. The only
difference is that Rovio 2 is programmed to turn clockwise as Figure 4-2 shows. Rovio’s IR sensors
do not detect the black and blue (from the LEDS) color of the robot, therefore it is convenient to
attach white paper or something colourful in the sides of the Rovio’s body.

The logic in pseudocode is shown below:

Wander_Rovios()
. Read status of IR detector for Rovio 1
. Read status of IR detector for Rovio 2
. 1f IR of Rovio 1 doesn’t detect object

move forward Rovio 1

1

2

3

4

5. else
6 rotate Roviol anti-clockwise for 10 degrees
7. 1f IR of Rovio 2 doesn’t detect object

8 move forward Rovio 2

9. else

10. rotate Rovio 2 clockwise for 10 degrees

Rovio 1 Rovio 2

Figure 4-2 IR based wander algorithm for two Rovios
33

4.2 DIGITAL IMAGE PROCESSING

4.2.1 COLOR FORMATS

Color image processing is divided in into two major areas: full-color and pseudo-color
processing. In the first category, the images are acquired with a full color sensor. In the second
category, the problem is one of assigning a color to a monochrome intensity or range of intensities.
Until recently, most digital color image processing was done at the pseudo-color level. However, in
the past decade, color sensors and hardware for processing color images have become available at
reasonable prices. The result is that full-color image processing techniques are now used in a broad
range of applications, including publishing, visualisation and the Internet (Gonzalez, et al., 2002).

Color is the most important characteristic of an image. For humans the recognition and the
interpretation of colors are effortless. However, it is not the same for the machines. Therefore, color
formats had to be introduced for the representation of the colors. Also, the effect of the different
color spaces on the performance of tracking and in general image processing algorithms varies. The
main color spaces that are being used are grayscale, RGB and HSV. HSV gives more accurate and
more robust tracking results compared to grayscale and RGB images (Comley, et al., 2008).

Grayscale images can be classified as intensity type images where the data that is used to
represent the image is a measurement of the intensity or the amount of light. The number of bits
used for each pixel determines the number of brightness levels that the pixel will have (Figure 4-3).

A color image can be classified as a set of multiple layers of grayscale images where each layer
of the image corresponds to a certain band in the visible light spectrum (Umbaugh, 1998). The
information that is stored in each layer of the color image is the brightness in a specific spectral
band. The most common used spectral bands are red (R), green (G) and blue (B), the three primary
colors in the visible range of the electromagnetic spectrum (Figure 4-3). The RGB color bands are
chosen as they correspond to the absorption characteristics of the human eye (Gonzalez, et al.,
2002) (Comley, et al., 2008).

While RGB may be the best representation for many applications, like television, it suffers from
a number of serious limitations when it comes to activities such as computer based surveillance
systems. The main limitations, of the RGB color space is due to the fact that the luminance
information that is embedded into each layer of the image. Varying levels of brightness in an image
causes RGB values to shift and that introduces instability in the image. The susceptibility of the
RGB color space to brightness levels indicates that each layer is equally affected and that the layers
are correlated to each other. To overcome this problem, the RGB color space can be normalised to

obtain the chromatically information for more robust tracking. It has to be noted that the

34

chromaticity information obtained from normalising the RGB data is still based on the RGB color
space and so is the still easily affected by uneven illumination (Comley, et al., 2008).

In order to overcome the limitation due to variations in the brightness, the RGB color space can
be transformed into a different format that decouples the brightness information from the colour
information (Umbaugh, 1998). The color spaces have the brightness information separated from the
color information. They have one layer of brightness information and two layers of color
information. The color spaces that are typically used in video tracking and surveillance are YCbCr
and HSV. The implemented methods are using the HSV color format.

The HSV color format has the luminance information in the V layer and chromaticity is placed
in the H and S layers (Figure 4-3). The separation of the brightness information from the
chrominance and the chromaticity in the HSV color space reduces the effect of the uneven
illumination of the image. The utilization of the chrominance and the chromaticity information
obtained from the HSV representation enables more robust tracking algorithms to be developed
than is possible based on the grayscale and RGB color format (Comley, et al., 2008).

Figure 4-3 RGB, Grayscale and HSV color spaces

4.2.2 IMAGE PROCESSING METHODS

This chapter describes the main image processing methods that were used in order to complete

simple tasks. These simple tasks were used as a basis to implement more complex ones.

4.2.2.1 EDGE DETECTION

Edge detection methods are used as a first step in line detection processes. Edge detection is also
used to find complex object boundaries by marking potential edge points corresponding to places in
an image where rapid changes in brightness occur. After these edge points have been marked, they
can be merged to form lines and object outlines (Umbaugh, 1998).

This method uses the Canny edge detection operator (Figure 4-4) (Canny, 1986).

The main steps of the algorithm are shown in pseudocode:

35

Edge_detection()

1. Initialise images

2. Capture BGR image from camera
3. Convert BGR image to GRAY

4. Down-scale the GRAY image

5. Up-scale the down-scaled image

6. Perform the Canny edge detection algorithm to the last up-scaled image

Figure 4-4 Edge Detection using Canny Operator

4.2.2.2 COLOR TRACKING

Color tracking is one of the basic detections. The agents will try to identify objects and by
identifying these objects they will behave accordingly. The robustness of the color tracking
algorithm is a crucial factor on the success of the implementations. The color detection requires an
image where the desired color range is being searched. It has been proven that the best color format
for this kind of detection is the HSV.

In pseudocode:

Color_Detection()
1. Initialise images and set color range in HSV values
. Capture BGR image from Camera
. Convert BGR to HSV image
. Search in the HSV image for the color range that we had already set
. Reduce noise by Smoothing the image
. Keep the pixels which are in the requested range by Thresholding the image
. Result in a binary image (white pixels: the pixels in the range)

. Erode the image

© 0O N o O B~ W DN

. Dilate the image

[EY
o

. Dilate the image

36

11. Erode the image

Figure 4-6 shows the image processing procedure for the yellow color detection. The colors
inside this range are being searched:

HSV minValue : {Hmin,Smin, Vmin} : {25, 180, 180}

HSV maxValue : {Hmax,Smax, Vmax} {60, 255, 255}

Figure 4-5 shows colors of the previous range in HSV format. The colors range from light
brown to light green. However, there are many combinations of the three HSV values, so when the

HSV parameters are equal to {43,255,255}, they represent the yellow.

Figure 4-5 Yellow color range in HSV. From left to right, {25, 180, 180}, {30, 189, 189}, {35, 198, 198},
{40, 207, 207}, {45, 216, 216}, {50, 255, 255}, {60, 255, 255} and {43, 255, 255}.

© (©) (©

Figure 4-6 Yellow Color Tracking. (a) BGR image, (b) HSV image, (c) Search color range in HSV, (d)
Smoothed, (e) Thresholded with Opening (erode-dilate) and Closing (dilate-erode)

Narrowing the color range results to more specific color detection. The previous search for
yellow can detect colors from light brown to light green. The range of the HSV values was very
large. For Hue was: 60-25=35, for Saturation was: 255-180=75 and the same range was for Value.
By careful testing of the algorithm the appropriate HSV parameters can be set for the search of a
specific color. By narrowing the range of the H, S and V values higher accuracy can be succeeded.

With the following values different shades of blue can be detected (as shown in Figure 4-7):

37

HSV minValue : {Hmin,Smin,Vmin} : {110,190,0}

HSV maxValue : {Hmax,Smax, Vmaxy {120, 225, 255}

Figure 4-7 has two blue spots of different shade. However, by setting properly the input search
range the method detects the darker one. That happened mainly because of the very narrow range
that has been chosen in H and S space. The first two parameters, H and S, have color information
while the third, V, represents the intensity. This last parameter, V, is not so crucial for the color
tracking, as far as it is in reasonable range. In comparison with the yellow HSV range, H ranges just
for 10 and the S only for 35.

Figure 4-7 Blue Color Tracking. RGB and Binary image

4.2.2.3 PINK BALL DETECTION

One of the first tasks was to make Rovios interact with a pink ball. Therefore, an algorithm was
needed for detecting the ball. The method that was implemented focused on the color and not on the
shape of the ball. This method also searches in two color ranges, and that is because pink/red color
exists in both sides of the HS palette (Figure 4-8). Furthermore, another characteristic that is very

useful in the developed Al methods is the display of the mass centre of the detected pink/red area.

H

Figure 4-8 HS palette

38

Pink_Ball_Detection()
1. Initialize images
2. Set the upper and lower color range
3. Capture BGR image from the camera
4. Convert BGR to HSV
5. Search in HSV image for the lower range (thresholded image 1)
6. Search in HSV image for the upper range (thresholded image 2)
7. Perform logical OR between the two thresholded images (result in one thresholded
image)
8. Reduce noise by Smoothing the last thresholded image
9. Keep the pixels which are in the requested range by Thresholding the image
10. Result in a binary image (white pixels: the pixels in the range)
11. Erode the image
12. Dilate the image
13. Dilate the image
14. Erode the image
15. Calculate mass point

16. Display mass point

Figure 4-9 Pink Color Detection and mass centre display

4.2.2.4 SEGMENTING THE IMAGE

The previous method calculates and displays the mass centre of the pink ball. Theagent has to
search, detect and move towards the ball. The position of the mass centre of the ball on the image

denotes the relative distance from the agent. Therefore, the position of the ball (mass centre) is

39

displayed on the image and commands are generated automatically based on the current position.
The idea is based on the segmentation of the image in rectangles and the display of the detected
mass centre.

The main logic is depicted in the pseudocode below:

Segmenting_Image()
1. Initialise the number of segments (e.g. n, total segments=nxn)
2. Initialise rectangle color
3. Initialise points color
4. Capture BGR image from camera
5. Create n+1 points in y dimension with a distance height/n
. Create n+1 points in x dimension with a distance width/n

6
7. Display the coordinates of each point
8

. Draw rectangles based on the points

-Lhﬂ_lﬂ) 120)
l !-man 240\

‘n(ann 1

180)(4B0,1 H‘iﬁ.

{0 A60)

Figure 4-10 Segmenting for n=4 (nxn=16 segments) and n=8 (nxn=64 segments)

4.2.2.5 DYNAMIC COLOR RANGE ADJUSTMENT

With the above algorithms implemented the Rovios are able to detect and play with a pink/red
ball in their environment. But what will happen if we replace the pink ball with a ball of another
color?

The answer is that the Rovios have to detect the ball (circle detection), sample its color and then
set a new color range which will be based on the color that they found. The color detection is faster
and more robust than the circle detection algorithm in a dynamic and complex environment. Apart
from that, Rovios are not able to find the pink ball (detect the color) in different light conditions.
With such an algorithm the robots will be able to track the ball and set dynamically the new color

40

range that they have to search for. With this algorithm the agents will behave autonomously and
dynamically inside a dynamic environment.

The pseudocode below describes this method:

Dynamic_Color_Range_Adjustment()
1. Initialise images
2. Initialise color of the centre and the inner and utter circumference of the detected circle
3. while (true)
4. Capture RGB image from Camera
Convert image to Grayscale
Apply threshold to the Grayscale image
Smooth the resulted binary image

Apply Canny edge operator

© o N o O

Search for circles using the Circular Hough operator

10. Set the number of circles to be displayed/detected

11. Display centre and the inner and utter line of their circumference
12. Print in console this information

13. if (‘a’ button pressed)

14. Search for the centre of the circle

15. Take the color of four neighbour pixels in RGB

16. Display in the Console this RGB color

17. Calculate their average RGB value and display it in the Console

18. Convert the last average value of RGB to HSV and display it in the Console
19. end if

20. if (‘c’ button is pressed)

21. Set the value range of the HSV parameters

22, Check them to be in range (0,255)

23. Set the HSV range dynamically based on the last average value of HSV
24, Initialize images and appropriate secondary variables and structures

25. while (true)

26. Capture RGB image from Camera

217. Convert RGB to HSV image

28. Search the HSV image for the new dynamically set color range
29. Smooth the image

30. Apply threshold

41

31. Erode the Binary image

32. Dilate the image

33. Dilate the image

34. Calculate the mass centre of the blob

35. Display the mass centre and its coordinates
36. if (“ESC’ pressed)

37. break while loop

38. endif

39. if (("ESC’ pressed)

40. break while loop

As the pseudocode clearly depicts, in the first part of execution of this algorithm the Circular
Hough Operator has been used to detect the circles. The parameters are set up to detect only one
circle. In this case the experimental environment has to have only one circle somewhere otherwise
the method won’t be stable. Figure 4-11 and Figure 4-12 shows this first step of circle detection and

real-time display of the centre and its circumference (graphical and in console).

e

{146, » ius = re (150,

(1427266 Radi e <146,

{146,
(146,
(144,
(158,
(146,
(158.
{142,
(158,
(146,
(146.
(148,
(144,
(148,
(158,
(146.
(148.
{146,

NEED NIRRT

W WN®

(148,
(144.
(148,
158,
(148.
(146.
{146 .
(144.
(146 .
(144.
(146 .
(146 .
{158.
(148,
{146.
(148,
(144.

» Radius:

Figure 4-12 Centre and Radius display on Console

As the pseudocode describes when the detected area is stable around a circular shape, button “a”
has to be pressed in order to take the values of four neighbouring pixels of the centre of the detected

circle. Figure 4-13 shows the sampling of the values in RGB. First the four values in RGB and their

42

average is displayed. The average is calculated among all the button pressings and as a result longer
sampling period (times of pressing ‘a’) means more accurate color calculation. After the sampling

procedure the last average value of RGB is converted into HSV format.

B ' C:\Users\CeX\Desktop\Image Processings in OpenCV for Rovio\5.Circle and Color Detection\circle ... = = S

Menu
a — Sample Color Again

¢ — Find

color

lcentre (146,268, Radius: 13

Centre <15

Centre
Centre
Centre
Centre

Average =

>>Average

8.278>,. Radius: 26

: RI2621 GI[491 BI921
: RI[1991 GI[47]1 BI831]
: RI20601 GI581 BI[968]
: RI[1971 GI541 BI82]

R[1991 GI[47]1 BI821
= HI[247]1 S[1941 UI199] KK

a-8

Centre
Centre
Centre
Centre
Centre
Centre

Menu
ample Color Again

¢ — Find color

(152,268,
(152,
(158,
{152,
{158,
{152,
(158,
{146,

(148,
(148,
(148,
{158,

{158. - Radius:

Figure 4-13 Sampling and Averaging neighbour pixels of the centre

Figure 4-14 shows the setup of the HSV range based on the last average HSV values. Inside the
code there are the variables which set up the new range. These variables in this example are:

Hue range: 180

Saturation range: 15

Value range: 15

The values must be between 0 and 255. Therefore in case that the values exceed these borders

the algorithm sets them 0 and 255 for the lowest and the highest value respectively.

r

B C:\Users\CeX\Desktop\Image Processings in OpenCV for Rovio\5.Circle and Color Detection\circle ‘M

: RI[1971 GI[47]1 BI871]
: RI2831 GI56A]1 BI861]
: RI2831 GI511 BI891]
: RI[1991 GI[47] BI831]

Average

>>Average

: RI2821 GI521 BI98]

: HI[2461 S[1891 UI282]1 <L

Menu
a — Sample Color
¢ — Find color

(144.,.268).
{146.,.268) .
(146,268 .
{148,278 .
(148.,268).
{148.268) .
{158,276,

HSU_MIN : HI1561
HSU_MAX := HI2551

Figure 4-14 Last Average and Color range adjustment in HSV

Again

Radius:
Radius:
Radius:
Radius:
Radius:
Radius:
Radius:

S[1741 VI1871]
S[2841 VI217]

43

By pressing the ‘c’ button, the function for searching in this range is being enabled. Figure 4-15

shows the detected area in the binary image and the display of the mass centre.

Figure 4-15 Dynamic color detection and mass centre display

4.3 SEARCH AND FIND PINK BALL

After implementing the previous image processing algorithms Rovios are able to search, find and
approach the ball (combining the pink color tracking and the image segmentation). Rovios can

autonomously wander around the room based on their vision on their search for the ball.

Figure 4-16 Detecting and Commanding

Figure 4-16 shows two images taken by Rovio’s camera. The image on the left shows how Rovio
detects the ball and displays the mass centre on the segmented image. The image is segmented into
5x5=25 rectangular areas. The command that is given to Rovio depends on the actual position of the
mass centre on the segmented image. The command is displayed on the top left corner of the right

image.

44

The pseudocode below depicts the logic for approaching the ball:

Auto_Commanding()
1. Calculate mass centre of the pink ball
2. if (centre.y coordinate > 400) //very low of the image
3. stop Rovio
display Stop Command

. else if (centre.y coordinate > 96)

move forward right

4
5
6. if (centre.x coordinate > 512) //far right of the image
;
8 display command

9

else if (centre.x coordinate > 348) //centre right

10. move forward

11. display command

12. else if (centre.x coordinates > 256) /[centre of the image
13. move forward

14. display command

15. else if (centre.x coordinates > 128) /lcentre left
16. move forward

17. display command

18. else [[far left of the image
19. move forward left

20. display command

21. else

22, rotate left (anti-clockwise) appr.10 degrees (basically, rotate and stop together)

23. display command

Figure 4-17 depicts Rovio playing with the ball. Rovio starts from position 1, there is no pink
ball on its sight, so it rotates anti-clockwise searching for the ball (2). Finally, in position (3) detects
the ball and moves toward it according to the Auto_Commanding. Rovio finds and kick the ball (4).
Then, the ball bounces (5) and Rovio searching again for it (6). When the ball is again on its sight

(7), moves and kicks it again (8).

45

Figure 4-17 Rovio playing with the ball

The same method has been implemented for a yellow ball. The only difference is the input range

of color (instead of pink, a yellow color range is inputted).
4.4 RoviIoS BALL PLAY

A simple scenario which involves two Rovios has been created after the implementation of the
previous algorithm/method. Rovio 1 will search, detect and “kick” the ball, after its completion
Rovio 2 will do the same, then Rovio 1 again and so on. Figure 4-18 shows the state transition for
each Rovio. Rovio moves from Idle when the user gives the command to execute this scenario.
When Rovio 1 finishes, gives permission to Rovio 2 to start. The same happens when Rovio 2
finishes.

The agents change their environment by changing the position of the ball. The position of the

ball is not fixed.

Z \
4 Search for the ball)\
X
/ N S \

(Idle) (Detect the ball \J

\/ “kick” the ball \’

\\—//

Figure 4-18 State transition for each Rovio
46

4.5 VISUAL SERVOING AND NAVIGATION SCENARIO

After the successful implementation of the previous algorithms/methods and especially with the
help of the two methods which detect and approach the pink and the yellow ball, a servoing and
navigation scenario was created. In this scenario, Rovio is beginning from its base and searches for
the pink ball. When it gets close to the pink ball, the goal changes and it searches for the yellow
ball. After finding the yellow ball, Rovio is again searching for the pink ball which possibly
changed position because of the first touch. After finding the pink ball for the second time Rovio
heads to its home position. This scenario is depicted in Figure 4-20 (the numbers show the sequence
of the actions).

The sequence of these actions can be depicted in the block diagram (Figure 4-19). The user is
enabling this scenario by simply pressing the appropriate button on the GUI. The GUI enables an
automated and autonomous behaviour while the numbers in the figure below describe the sequence

of events or states that the robot is passing through.

- T B e S

b R

/ / 3
‘r‘ Search Pink \ 2 Detect Pink | [Approach \\
3

/’4‘\ Ball Ball / 9‘\\ Pink Ball /
1/ S
/ \:\ /7‘//,/" P
10 e 4
[starting/ \ = >
([Home [* o e 3
\ are e D
\Fesition / Pt \
O / \ 5 / »\ 6/ \
‘v’ Search | > [Detect | [Approach
\ Yellow Ball | \ Yellow Ball / "\ Yellow Ball |
\\ // ‘\\) / \'\y ///
S . S

Figure 4-19 Sequence of actions for completing Scenario

3 (61—~ -
) i ol /*f

o ' / //

4~ O o)

Figure 4-20 Navigation result for Scenario
47

4.6 POSITIONING SYSTEM

The system consists of three values: x and y coordinates and theta value. Figure 4-21 depicts the
logic of the positioning system in the room. The red lines represent the two infrared beams. The
positioning system is based on their position.

The build-in positioning system of the Rovios is very unstable. The coordinates are being read

from the status string.

BASE

\ 'v‘
\‘{’
(+X,-Y), ©=1.5
+11/2
+X
\u /
+TT +Y (0,0) -y -t =5
(0,-Y), ©=1.5 (0,-Y), ©=3.2
-X
-t/2
&
I" \
(-X,0)| ©=-1.5

Figure 4-21 Positioning

4.7 SUMMARY

After describing the logic of the developed methods, the following chapter focuses on the way
that these methods had been implemented describing the tools and the techniques that were used.

48

5 IMPLEMENTATION

The software implementation of the current project is a Windows Form Application build in
Visual Studio 2008 in Visual C#. Rovio’s C# API is being incorporated in this software project.
All the code is included in Appendix A and B.

5.1 OPEN.CV AND EMGU.CV

Open CV libraries are used to implement the image processing methods. Open CV is an open
source computer vision. The library is written in C and C++ and runs under Linux, Windows and
Mac OS X.

Open CV was designed for computational efficiency and with a strong focus on real time
applications. Open CV is written in optimised C and can take advantage of multicore processors.
The library contains more than 500 functions and one of its goals is to provide a simple to use
computer vision infrastructure that helps developers build fairly sophisticated vision applications
quickly (Bradski, et al., 2008).

Open CV was helpful on the first stages for developing and testing the methods in DevC++
compiler. However, when it came to implement the methods to Rovios this wasn’t enough.
Therefore, Emgu CV was used which is a cross platform .NET wrapper to the Intel Open CV image
processing library. This wrapper allows Open CV functions to be called from .NET compatible

languages such as C#, VB, VC++ and IronPython.
5.2 GRAPHICAL USER INTERFACE

This chapter presents and analyses the functionalities of the Graphical User Interface (GUI) that
was designed. The GUI has two main tabs and is video-based. The first tab controls two Rovios of
our choice (out of the five) and contains all the buttons and controls for the execution of the

scenarios and the image processing methods. The second tab manually controls the five Rovios.
5.2.1TaB 1

Figure 5-1 shows Tab 1. The main characteristics of this interface are the two video streams that
are being acquired from current Rovio 1 and 2. In the top of the images, Rovio’s current coordinates

and theta value are displayed. Additionally, their distance is calculated and displayed.

49

http://www.emgu.com/wiki/index.php/OpenCV

Rovio Application

Distance : 8015.24

Rovio 2 (-4607,6901) theta :-0.07

PLAY with Pink ball
Select Rovios
[J Rovio 1
[Rovio 2
[Rovio 3
[] Rovio 4
; [] Rovia s
- 4 7 Speed
Edge Detection Canny Parameters Color Tracking | [] Ble [Puple [Yellow o
Head ea
]t]2 Rl S=——— Or e [~]| #][2)
;3 1 7y =
@ Head ’\ X . @ it
Middle L ‘TheshLinking 8- s Middle
. ! v Head
B0 2 e)
—
v Get find pink ball
: n =,]
l RE';‘:n l lﬁndpinkbau ” find new ball l y i 3 M E’
;
m find yellow -
N & Battery Status
Roviad | NNNNNRNRNRRRNRNNNN
. = Threshold H
[Cicte Detection 1] o ofCirtes 0 2] 5 l“"‘*‘“ s Revioa (WNRRNRRRNRRNNRRNRRRNRRN
- - : e cum, Resohution
0 4| Min Distance
Smoothing: Ganssian =
Paaml Pawam2 Paam3 Paramé 0 & [cunyTiohok
e I e 0 2| AccunTheshold
< 0 3| Min Radis
ay &
Dapbold - Thahoid 28 Asumaiea 0 5| Max Radin
in 4 o & L&l =

Figure5-1 Tab 1

5.2.1.1 MANUAL CONTROLS

Under the images the panels for the manual control of the robots have been placed (Figure 5-3).
Rovios are omni-directional agents and that is the reason why buttons command movement to all
directions (forward, backward, left, right, forward left, forward right, backward left, backward
right). Furthermore, the stop button stops the current movement. Next to these controls there are
two buttons for rotation (clockwise and anti-clockwise) movements and three buttons that adjust the
position of the head. In the same panel, there is the button which commands Rovio to go home and

dock to its base. Figure 5-2 shows the state diagram which describes the functionality of the manual

controls.

50

Go

| Home and)

Go

{ |
(Rotate| ., Dock Forward _
| Right Go
T —] Back- |
‘ Rofate W?[d
) Left r
i 3 \/ +~ Go
P T | Left
\ PRSI - —
(EStopBls. .72 J/ NS ==
p \T S / "' Go
Go - 7T x——>__ \ Right /
[Back | T~/) Go
Right * Go ¢ ~“Go_ . [Forward)
Back | [Forward) " Left
Left Right B

Figure 5-2 Manual Control State Diagram
Head Head
i]|) (|
Head Head
e Y =)
Head Head
Donarty ﬁ n Do
find pink ball
‘ firnd pink ball H finnd few ball ‘
finnd wellow ball
fird wellow -
fall Mizsion 1

Figure 5-3 Manual Control Panels

3 3K
(=)=

E3EAET

)
| 8]

Get

v

5.2.1.2 REPORT STRING

Below the manual control buttons there is the “Get Report” the button which displays in a new
window the status of the agent. Figure 5-4 shows the two windows with the status string of the two
Rovios. Critical information is being displayed in these windows for the control of the robots. First
of all, current coordinates x, y and theta are being displayed. The flags display the status of the IR
sensor. After that the settings of the built-in camera are being displayed. The battery level and the

charging state are other important information that is being used in this project.

Cmd = nav

responses = 0|x=2409|y=-224|theta=-1,655|room=0|s5=8199
|beacon=0|beacon_x=0|next_room=9|next_room_ss=100
|state=0|ui_status=0|resistance=0|sm=15|pp=0|flags=0005
|brightness=6|resolution=3|video_compression=2|frame_rate=30
|privilege=0|user_check=0|speaker_volume=15|mic_volume=15
|wifi_ss=216|show_time=0|ddns_state=0|email_state=0
|battery=123|charging=80|head_position=203|ac_freq=1

Cmd = nav

responses = 0|x=-2780|y=4593|theta=0.843|room=0|ss=5820
|beacon=0|beacon_x=0|next_room=9|next_room_ss=112
|state=0]ui_status=0|resistance=0|sm=15|pp=0|flags=0005
|brightness=6|resolution=3|video_compression=2|frame_rate=30
|privilege=0|user_check=0|speaker_volume=2|mic_volume=15
|wifi_ss=214|show_time=0|ddns_state=0|email_state=0
|battery=130|charging=80|head_position=204|ac_freq=1

Figure 5-4 Status Reports
51

The activity diagram in Figure 5-5 depicts the procedure that is followed in order to fetch and

display the status string.

GUI/User

Rovio Controller

Rovio

“Get Report”
button pressed

isplay the info of th
Report in a new
Window

/~ Generate
ttp Reques

Receive
Report data

Receive
Request
Acknowledge
Request

Generate
Report
Transmit
Report

5.2.1.3

The two yellow play/pause buttons enable/disable the IR based wander algorithm for each Rovio

Figure 5-5 Get Report Activity Diagram

IR WANDER BUTTONS

as the Activity diagram depicts in Figure 5-6.

GUI/User

Rovio Controller

Rovio

IR button
pressed
[pause m

Change to
Play mode

bde]

Request to enable IR
sensor and

Send appropriate
commands
For wandering

[button pressed]

Enable IR
sensor
[no

utton
A 4
9'4559‘1] Wander
Around

button icon

Figure 5-6 IR buttons Activity diagram

52

5.2.1.4 FIND BALL AND MISSION BUTTONS

The buttons “find pink ball” and “find yellow ball” command Rovios to search, detect and
approach the corresponding ball. These buttons search for an already set up color range, in these
cases pink and yellow color range. Figure 5-8 depicts the flowchart for these functionalities for
current Rovio 1 (something similar has been programmed for current Rovio 2). Furthermore, the
“find new ball” button searches for the new dynamically set up color range. Finally, button
“Mission 1” enables Rovio to execute the servoing and navigation scenario that was described in

4.5. Scenario makes use of the methods which find and approach the pink and yellow ball and

!

(Seacrh, Find and approach pink Ball)

finally drives home (Figure 5-7).

Y

o ™\
::\ Seacrh, Find and approach yellow Ball)

Y
v'/’ .\
(Seacrh, Find and approach pink Ball)

\
\

o~ \,

I'd s
| Drive Home

Figure 5-7 “Mission 1” activity diagram

53

While{True)
Loop

nable Stopwatch
for execution time
calculation

A

Pass string for
current Rovio 1

Request Video

Stream

Take Image Stream

Yes
Do Edge

Detection?

Pink Tracking?

(-0t

Yes

No

Pink Ball
Commanding?

No

Color tracking?

No

Yellow Ball
ommanding

Figure 5-8 Current Rovio 1 button functionalities

Apply Edge
Detection to Image

Pink Tracking to
Image

Segmenting and
Pink tracking to
Image

Find Pink ball and
autocommand

Blue Color

Tracking?

No

7 Color Tracking?

No

No Detection

ind Yellow ball and
autocommand

Normal Image
Display

y
Stop Stopwatch L

rcle detection and
auto-adjust color

o

Y.

v

A 4

Yes
Track Blue Calor

Yes
Track Yellow Color

Yes
Track Purple Color

Set HSV range from

trackbars

Track this color
range

54

5.2.1.5 NORMAL OPERATION BUTTON

The button on the top of the GUI brings the state of the operation and display into normal
operation. Normal state of the application is the state where the standard threads are running and
any operation can be triggered. As the flowchart shows in Figure 5-8 this is the default operation.

5.2.1.6 PINK BALL TRACKING BUTTON

By pressing the “Pink Tracking” button (on the central top of the GUI), the pink ball is detected
and its position is displayed on the processed image (Figure 5-8 and Figure 5-9). The ball is in the

same position but two Rovios from different positions can detect it (Figure 5-9).

L Lt = Execution Time:308ms jl = Execution Time:183ms

Figure 5-9 Pink Ball tracking

5.2.1.7 PLAY WITH PINK BALL BUTTON

This button enables the scenario for the current two Rovios to play with the pink ball as it is
described in 4.4,

5.2.1.8 SELECTING RovVvIOS

Figure 5-10 shows the panel where Rovio 1 and 2 can be chosen. By default Rovio 1 and 2 are
the Rovios with IPs “http://192.168.2.11” and “http://192.168.2.12” respectively. However, agent
swapping can be performed by clicking the desired Rovio and address it as Rovio 1 or 2.
Immediately, the incoming image stream will change. This is a very dynamic characteristic as it
makes it feasible to change agents during execution time.

55

http://192.168.2.11/
http://192.168.2.12/

Select Rovios
[] Rovio 1
[] Rovio 2
Rovio 3
[[] Rovio 4
[] Rovio 5

| Roviol |

[FRavisz |

Figure 5-10 Select Rovio 1 and 2

5.2.1.9 SPEED CONTROL

Trackbar speed controls the speed of the robots. At position 1 Rovios have their max speed and
in position 10 their minimum. By default they operate in max speed. This functionality was
accomplished by setting a public variable which is universally changeable from the trackbar (Figure
5-1).

5.2.1.10 EDGE DETECTION PANEL

Enabling the edge detection, using the Canny operator, the two trackbars can be adjusted for
different results (Figure 5-11 and Figure 5-8). The first trackbar adjusts the Threshold while the

second one adjusts the Threshold Linking parameter of the Canny algorithm.

56

Execution Time:103ms

Canny Parameters

Thyesh

ThreshLinking

Canny Parameters

Thresh = 20

ThreshLinking = 28

Edge Detection Canny Parameters

Thresh =93

ThreshLinking = 114

Edge Detection Canny Parameters

Thresh = 138

ThreshLinking = 45

Figure 5-11 Edge Detection panel and manual adjustment

57

5.2.1.11 SEGMENTING PANEL

Figure 5-12 shows the functionality of button “Segmenting”, and the different result by adjusting
the number of the segments while Figure 5-8 shows how this functionality can be enabled. This
button segments the screen according to the trackbar and detects and displays the ball’s position at

the same time. These images helped to develop the Auto_Commanding() algorithm that was
presented in 4.3.

J{;\m,me) 5

|

‘ | /

__luemio2) (=25 102) | [RR4 yopy i gl
| |

(213,180}

(0.520)

Figure 5-12 Segmentation and trackbar (up: 25 segments, down: 9 segments)

5.2.1.12 BATTERY MONITORING PANEL

Figure 5-13 shows the battery monitoring panel. In case of charging the progress bars are

“rolling”. Appropriate number of green lines is being displayed by extracting the level of battery of
each Rovio from the status string.

e

[illlllllll
(I

L S s S

Figure 5-13 Battery Monitoring

58

5.2.1.13 COLOR TRACKING PANEL

Figure 5-14 shows the color tracking panel. The button “Color Tracking” enables/disables the
current tracking. There are four checkboxes. The first three enable a predefined search in these
color ranges (Blue, Purple and Yellow). The last checkbox (?) enables the manual mode. In this
mode, the desired HSV color range is manually set while the result is displayed on the binary

images. The way that this panel works is depicted in the flowchart in Figure 5-8.

Colar Tracking []Ble [|Pmple [] Vellow

[Mirinmm
y H_MIN =0
¥ S_MIN =0
J ¥ MIN =0
Masinom
J H

-

Figure 5-14 Color tracking panel

Figure 5-15 shows the original images from the Rovios (up) and the blue detected areas on these

images (down).

Execution Time:117ms

D Dbk [valor
Oz

Mininmm

Figure 5-15 Blue Color tracking

59

In the same way Figure 5-16 shows the result of searching in the yellow color range. The

detection of the yellow ball on the second binary image is clearly shown.

Execution Time:89ms |

Color Tracking []Bhe []Pugplk Yellow

[]? Mininmam

Figure 5-16 Yellow color tracking

The detected areas in the binary images are displayed in white. When the HSV min values are set

in zero and the HSV max values in the max value (256) everything is detected (Figure 5-17).

2Rovios | 5 Rovios

Rovio 1 2657,-2990) theta :2.33 Distance : 9697.83 Rovio 2 (-773,6081) theta :0.14

Fink Tracking
Color Tracking []Bhe [Puple [Vellow
N A
j HMIN=0
j S MIN=0
J V_MIN=0

Maxirmm

j H_MAX = 256

j S_MAX = 256

J V_MAE =256

Figure 5-17 Detect everything

From these positions, by narrowing the range specific colors are detected and discarded. Figure
5-18 detects the colors between HSV_MIN= {36, 25, 64} and HSV_MAX= {225, 242, 222}.

60

C'olor Tracking [e [Puple [Yellow

7 Minizmazm.
J H_MIH = 3

J §_MIN = 25
v V_MIH = &4
Mtz
J H_MAX = 225

\j 5_MAX = 242

v V_MAX - 222

Figure 5-18 Narrowing the HSV range
Experimenting with the values of the trackbars that adjust the HSV values, we find out that one

range that detects the current pink color is the HSV_MIN= {143, 43, 172} and HSV_MAX= {187,
183, 256} (Figure 5-19).

Execution Time:103ms

Ot Clrwse O] v

V]2 Mininmm

¥ H_MIN = 143
S_MIN = 43

V_MIN = 172

H_MAX =187
S_MAX =183

./ V_MAX =256

Figure 5-19 Adjusting the range

61

5.2.1.14 CIRCLE DETECTION AND DYNAMIC COLOR RANGE ADJUSTMENT PANEL

Figure 5-20 shows the circle detection and the dynamic color range adjustment panel. The
“Circle Detection 1” button enables/disables the circle detection for current Rovio 1. The control
next to this button displays the number of circles for detection (Figure 5-22). The box below
displays the centres and the radiuses of 3 detected circles. All the important parameters for the
circle detection algorithm are displayed on the right side of the panel. The threshold parameter is
very important and can greatly change the result of the detection. After thresholding the original
image smoothing is following using a Gaussian filter whose parameters can be adjusted from the
four boxes below it. The canny parameters are also adjustable in the corresponding panel. After all
this preparatory stage, the Circular Hough detection algorithm is applied whose parameters are

adjustable from its panel on the extreme right of the panel.

Circle Detection | | Ho. of Cixeles 3 2

threshold =132

R

i

Aecum. Fesohation

100 Min. Distance

Smoothing: Gaussian
Param 1 Param.2 Param 3 Param 4

11 & = 0 = o3 50

Carny Threshold

Aecum Threshold

Min, Radis
Canny

AF| (k| A A Ak 4

Threshold 1 Threshold 2 ApertureSize 100

= e O

Mazx. Radins

Figure 5-20 Circle Detection panel

By adjusting these parameters properly the circle detection functions effectively locking real
circular shapes. When the centre and the radius are steady (notice that from the image and the first
text box which displays the coordinates of the centre and the radius) the sampling is taking the color
values of the detected area and displays them in the second text box. A BGR average is being
calculated while its transformation to the HSV format is useful because based on that the new color
range is being set.

Figure 5-21 shows which pixels are being used in the color averaging. The “Sample” button has
to be pressed when the algorithm detect a circle steadily. This button enables the algorithm which
calculates the average. The colors of nine pixels are taken for efficiency reasons. The
transformation into HSV format happens after calculating the average of these 9 pixels in BGR

format.

62

{-10,10) (0410) (10,10)

(-10,01 0,0) [110,0)

(-10,-1

Figure 5-21 Pixels used in the color averaging

Figure 5-22 One, two, three and more circle detection

By setting the threshold value in 180, the light green ball is being locked (Figure 5-23). By
pressing the “Sample” button the BGR average is: R [148] G [205] B [132] and its transformation
into HSV is: H [137] S [90] V [205].

63

Accum. Resohtion

Circle Detection 1 | No.ofCircles 1 | I Sample] [Take HSV Range Theeshold = 130

-

Min. Distance

Smoothing: Ganssian
Param 1 Param2 Param 3 Param 4

o IS e e

Canny Threshold

MR
=1 o

=] E
I SEARREANEE

Accum Threshold
Min. Radms

o
<>

Canny
Threshold] Threshold2 ApertureSize

I I o

Max. Radms

=
o
4>“

Figure 5-23 Ball detection

Figure 5-24 shows the importance of the right set up of the parameters. Only by changing the
initial threshold and the smoothing parameters the algorithm is not able anymore to detect the ball

in exactly the same image with the same light conditions (compare Figure 5-23 and Figure 5-24).

. Execution Timei] 85ms

:

Wo.ofCicles! 2| [Sample | [Take HSV Range | Thmholiziic Hough
: , J 2 2| Acoum Resolation
2 3 5]100 3_ Min, Distance
Smoothing: Gaussian r—
Param.1 Param2 Param3 Param4]LS__'_ gl ok
- O O 50 2| AccumThieshold
o {30 4| Min Radins
Thueshold] Threshold2 ApertureSize 100 3| Max. Radis
z :

I I o

Figure 5-24 Importance of parameters in detecting the ball

64

By pressing the “Take HSV Range” a new HSV range in the Color Tracking panel is
automatically being set up (Figure 5-25). If the result is not good and the binary image has a lot of
noise it is preferable to manually correct the range. The effectiveness of the dynamic range set up
method can be checked from the binary images by pressing the “Color Tracking” button (Figure 5-
25). When the result is the desired one the “find new ball” button, from the first described panel
(Figure 5-3), inputs the current HSV range in a new method which detects this color range and
gives Rovio the appropriate commands to approach the new detected ball (Figure 5-26).

Color Tracking | [| Bhe [] Puple [] Yellow
? Minizmam
3 H_MIN =39
3 S_MIN =68
V_MIN = 143

-

H_MAX =88

-

S_MAX =118

-

) VA% =25

. Execution Time:] 30ms Execution Time:78ms

Figure 5-25 Adjust manually the range

Execuﬂon T'ime 217ms

. B o 'l
Action:Forward '

|

- find new ball

Figure 5-26 Find the new ball
65

5.2.2TAB 2

Figure 5-27 shows Tab 2 which controls the five Rovios. The “Enable” button enables the
threads that fetch the images from all the Rovios. This button was added because when Tab 2 is
active the execution time of the image processing algorithms in Tab 1 raises significantly while the

performance decreases.

Ensble Rovio 2 Execution Time:120ms

Sk ecution Time:122ms

Figure 5-27 Tab 2

5.3 THREADING

The developed application has two types of threads; the threads for tab 1 (Figure 5-28) and the
threads for tab 2 (Figure 5-29). By default the threads for tab 1 are enabled. To activate the threads
for tab 2, the “Enable” button has to be pressed. As it was mentioned earlier, this button was added
for efficiency reasons.

For tab 1 and tab 2, the buttons for manual control are being served via the main WinForm
thread. In tab 1, the image acquisition and all the image processing methods are being served by the
two threads that acquire the images from Rovio 1 and 2. The positioning thread is reading the
coordinates of the current two Rovios and displays them and their between distance. The battery

monitoring thread reads the level of battery and displays their level using the progress bars. The
66

wander methods for the two Rovios are being enabled/disabled by the corresponding buttons, also

depicted in Figure 5-28.

WinForm Main Take Image Rovio Take Image Rovio Bat‘:gsnl/tll\ar;:iiiing Wander Rovio 1 Wander Rovio 2
Thread 1 Thread 2 Thread Threads Thread Thread
? WinForm Application Loaded
Close a<lprunning
Threads

Figure 5-28 Threads in Tab 1
For tab 2, the threads that acquire the images for Rovio 1 and 2 continue to run, but now the
images are being displayed in the two first image boxes in this tab, and three more threads that

acquire the images for Rovios 3, 4 and 5 are being enabled (Figure 5-27 and Figure 5-29).

Win;a:renagﬂain Image Rovio 1 Image Rovio 2 Image Rovio 3 Image Rovio 4 Image Rovio 5
? WinForm Application Loaded
(®
Close all running
Threads

Figure 5-29 Threads in Tab 2
67

5.4 SUMMARY

This chapter showed in which way the methods have been incorporated in the GUI and how it
controls and triggers different autonomous or semi-autonomous agent tasks.
The next chapter tests and evaluates the functionality of the GUI and the methods that are

triggered from it.

68

6 TESTING & EVALUATION

In the beginning, the execution time and the number of frames per second will be calculated for
the various image processing techniques that were developed (Normal, Edge Detection,
Segmenting, Color Tracking and Circle Detection). After that, the main autonomous missions of the
agents will be tested and evaluated. Evaluating the performance of such frameworks is notoriously
difficult among other reasons because of the instability of the light conditions in the room that the

experiments took place.
6.1 EXECUTION TIME

The measurement of the execution time was implemented with the use of the Stopwatch class.
The stopwatch operator starts to count in the beginning of execution of the loop of the image
acquisition thread and stops in the end of the each loop (Figure 5-8). Furthermore, the execution
time is displayed on the upper right corner of each image. From this number the number of frames

per second (FPS) for each image processing method can be approximated.
6.1.1 EXECUTION TIME IN TAB 1

In this chapter, the number of frames per second of each method will be calculated from the

displayed execution time (in millisecond).
6.1.1.1 NORMAL EXECUTION

Table 6-1 has 10 values of the Execution Time (ET) in normal mode from current Rovio 1 and 2.
The average ET is being calculated from these values, and finally the average FPS is being

calculated from the ET average (1000ms/Average ET (ms) = Average FPS).

Table 6-1 Average ET and FPS in normal mode

Rovio 1 Rovio 2
98 111
118 79
94 77
92 63
77 72
88 59
93 77

69

147 78
98 65
74 65

Average ET: 97.9 ms

Average ET: 74.6 ms

Average FPS: 10.21

Average FPS: 134

6.1.1.2 EDGE DETECTION

Using the default values Thresh=70 and ThreshLinking=60.

Table 6-2 Average ET and FPS in default edge detection

Rovio 1 Rovio 2
90 93
92 76
101 102
117 117
97 142
115 115
90 147
92 137
108 85
93 124

Average ET: 99.5 ms

Average ET: 113.8 ms

Average FPS: 10.05

Average FPS: 8.78

6.1.1.3 PINK TRACKING

In the following experiment, both Rovios have the pink ball in their line of sight. The pink
tracking and the segmenting methods have almost the same FPS that is the reason that
measurements from the segmentation method are not included. This happens because the

segmenting method comprises of the same image processing algorithm with the rectangles added in

the end of the processing (Compare Figure 5-9 and Figure 5-12).

Table 6-3 Average ET and FPS while tracking pink

Rovio 1

Rovio 2

70

178 179
197 182
189 164
165 125
163 186
202 112
219 189
234 145
172 200
217 161
Average ET: 193.6 ms Average ET: 164.3 ms
Average FPS: 5.16 Average FPS: 6.09

6.1.1.4 COLOR TRACKING

Color tracking in a random manual

HSV_MAX={216,207,228}).

adjusted range (HSV_MIN={31,41,30},

Table 6-4 Average ET and FPS while tracking colors

Rovio 1 Rovio 2
199 155
118 97
134 138
168 133
202 130
134 104
202 146
142 144
142 178
185 180
Average ET: 162.6 ms Average ET: 140.5 ms
Average FPS: 6.15 Average FPS: 7.11

71

6.1.1.5

CIRCLE DETECTION

Default parameters (Figure 6-1) and number of Circles to detect for Rovio 1.

Circle Detection 1 | He.of Cirles || £

[Sample] [Take HEV Range l

threshold =133 Hough
v 2 %] Acoum Resohtion
o0 % Min. Distance

Smoathing: Ganssian -
Param.l Param.2 Param.3 Param 4 s L (Cermgy Wizt
11 | 1 | (U= LI S0 & oo Threshold
e 0 % Min Ralins

Threshold 1 Threshold 2 Apermuefize 100 %| Mlax Redis

1 i s 2

Figure 6-1 Default parameters for Circle Detection
Table 6-5 Average ET and FPS in default circle detection

Rovio 1 (No. Of Circles:1)

Rovio 1 (No. Of Circles:5)

171 260
271 274
207 273
261 206
200 214
161 304
284 299
174 317
191 282
273 299

Average ET: 219.3 ms

Average ET: 272.8 ms

Average FPS: 4.55

Average FPS: 3.66

Altered parameters (Figure 6-2) and number of circles to detect, again for Rovio 1.

Circle Detection] | Ho.of Cireles |1 2 [Sample] [Take HEV Range I

threshold =154 Hough
: 4 2 doourm, Resohition
20 % Iin. Distance
Smoothing: Ganssian
Param. 1 Param 2 Param 3 Param 4 s : Gy Mimesbeit
7 £ 7 £ 0 £ o E a0 % dicoum Threshold
3 . .

Canmy m % Min. Radms

Threshald 1 Threshold 2 ApertureSize a A M. Fadias

42 I TS

Figure 6-2 Altered parameters for Circle Detection
Table 6-6 Average ET and FPS in altered circle detection

72

Rovio 1 (No. Of Circles:1) Rovio 1 (No. Of Circles:5)
227 301
218 322
242 264
261 301
212 290
283 278
228 320
243 311
239 274
240 299
Average ET: 239.3 ms Average ET: 296 ms
Average FPS: 4.17 Average FPS: 3.37

6.1.2 RESULTS

In the four first measurements the execution times for Rovio 1 and 2 for four different modes is
measured (Normal, Edge Detection, Pink Tracking and general color tracking). The result that is
depicted in Figure 6-3 was expected because the threads that acquire the images from the Rovios
are being executed asynchronously. This means that the average ET and as a result the FPS has to
be very close for current Rovio 1 and 2.

=f=FP5 Fovio1l =—=FP5 Eovio?2

111
6.15

Normal Edge Detection Pink Trackinz Color Tracking

Figure 6-3 FPS comparison between Rovio 1 and 2

73

Figure 6-4 shows the average execution times for current Rovio 1 for different image processing
methods of this project. As it was expected the quickest method is the simple display of the
acquired image from the camera, unprocessed. Edge detection is slightly slower. Pink and Color
tracking are very close. Circle’s detection ET depends heavily in its parameters and especially in the
number of the detected circles. The same results are depicted in Figure 6-5 (Normal operation is the

quickest while Altered Circle detection (No. of Circles:5) is the slowest).

== Averaze Execution Time {ms)
2046
Normal Edge Pink Color Default Default Altered — Altered
Detection Tracking Trackins Circle Circle Circle Circle
Detection Detection Detection Detection
(Circles: 1) (Circles:53) (Circles:1) (Circles:3)

Figure 6-4 Average Execution Time (Rovio 1)

=#=Frames Per Second (FP3)

Figure 6-5 Average Frames Per Second (Rovio 1)
74

6.2 IR BASED WANDERING

Figure 6-6 shows Rovio while it is wandering around the room with the coloured balls and the
walls as physical obstacles. In Figure 6-6 (a) the agent is docked. It starts moving straight (b), it
reaches the wall (c) and turns left (d), continues straight and passes by the yellow ball (), finds
another docked agent (f) and turns again left towards the yellow ball (g and h), turns again left and
moves straight (i).

(©) N (H &5 @

Figure 6-6 IR based wandering

With the current simple algorithm (described in 4.1.1) Rovio can autonomously wander in an
unfamiliar environment while the receiving video provides useful information to the user. In case of

collision, the user can effectively help the agent to overcome it using the manual controls.
6.3 FIND PINK AND YELLOW BALL

This chapter measures how much time Rovio wants to find and approach the ball. Also, the
success rate of this mission in full operation speed is being calculated. In these experiments the pink
ball is inside the sight of the current Rovio 1 (here Rovio 5) (Figure 6-7).

For these measurements Rovio 5 was used (Table 6-7). The pink ball is placed in a standard
position in a distance from the agent (approximately 3 meters away). The time from the starting

position till Rovio reaches the ball is being measured.

75

Figure 6-7 View from docked Rovio 5 (find pink ball)

Table 6-7 Rovio 5 find pink ball measurements (line of sight)

No. of Experiment No. of Rotations Time Result of
Experiment
1 0 6.31 sec Success
2 0 6 sec Success
3 0 6.3 sec Success
4 0 6.18 sec Success
5 0 6.1 sec Success

Figure 6-8 shows the actions of the Rovio in this experiment. The images on the left are the
images that Rovio acquires and processes in order to complete its task. The images on the right are
taken at the same time with the images on the left from an external camera. These figures shows

how Rovio moves from its home position towards the ball.

76

Figure 6-8 Find Pink Ball (Rovio 5 — Line of sight)

Now the same experiment is repeated without having the ball in the line of sight of the current
Rovio 1 (here Rovio 1) (Figure 6-9). The agent has to rotate in order to “lock” the target in his view
and then approach it.

77

Figure 6-9 View from docked Rovio 1 (find pink ball)

In comparison with the previous experiment a significant increase is noted in time mainly
because of the rotation that is required in order to “lock™ the target. The rate of success is again
100%. The no. of rotations and the time depend heavily on the light conditions of the room. The
success rate may decrease as the light conditions change. For example, by turning off the lights in
the room, it may be impossible for the agent to “lock™ its target. In this occasion, helping manually
the agent is one choice either by re-setting the HSV range that is looking for or by following the

dynamic color range adjustment procedure as it is described in 5.2.1.14.

Table 6-8 Rovio 1 find pink ball measurements (non-line of sight)

No. of Experiment No. of Rotations Time Result of
Experiment
1 1 21.64 sec Success
2 1 19.18 sec Success
3 1 16.5 sec Success
4 1 17.77 sec Success
5 1 15.68 sec Success

Figure 6-10 shows how Rovio searches the ball, by rotating, and then moves towards it.

78

Figure 6-10 Find pink ball (Rovio 1 — Non-line of sight)

The same experiment with yellow ball follows.

79

Figure 6-11 View from docked Rovio 1 (find yellow ball)

The success rate is again 100%. However, it is noted that sometimes Rovio wants one full
rotation to “lock™ its target and sometimes just a quarter. This is the reason why time varies

significantly.

Table 6-9 Rovio 1 find yellow ball measurements (non-line of sight)

No. of Experiment No. of Rotations Time Result of
Experiment
1 Y, Rotation 7.4 sec Success
2 Y, Rotation 8.33 sec Success
3 1 16.79 sec Success
4 1 20.47 sec Success
5 Y, Rotation 7.43 sec Success

Figure 6-12 shows how Rovio searches the ball, by rotating, and then moves towards it.

80

Fxwintion

Figure 6-12 Find Yellow ball (Rovio 1 — Non-line of sight)

6.4 CHANGE AGENT THROUGH MISSION

Here Rovio 1 will be assigned to find the pink ball. Before it completes its task, Rovio 4 will be
assigned to complete its task by using the dynamic characteristic of the GUI to select and change
current Rovios 1 and 2. In this example, current Rovio 1 is being swapped, Rovio 1
("http://192.168.2.11") swaps with Rovio 4 ("http://192.168.2.15").

81

Figure 6-13 Find pink ball, swapping agents

As Figure 6-13 shows, Rovio 1 detects and moves towards the ball (a and b), at that moment
Select Rovios panel (Figure 5-10) is being used in order to assign Rovio 4 as the current Rovio 1.
As a result, Rovio 1 stops and Rovio 4 continues and fulfils its mission (find the pink ball) (c and
d).

This was an example of this dynamic characteristic. Swapping agents can be done during any
kind of mission that is implemented in this project. This semi-autonomous behaviour can help in
difficult situation where one or more agents are not able to complete their task. The reasons for not
completing their mission can vary from simple battery depletion issues till heavy collisions in
isolated areas without visual contact from the operator. Therefore, having some agents standby can

be useful and helpful.
6.5 PLAY WITH PINK BALL

This method described in 4.4. Two Rovios are involved to fulfil this scenario. Figure 6-14 shows
these two agents in action. Current Rovio 1 moves towards the ball (a), when he finds the ball (b) it
calls current Rovio 2 to find the ball (c). Rovio 2 finds the ball (d) and Rovio 1 searches again
(rotates searching) the ball (e). Rovio 1 finds and kicks the ball (f). The ball moves away and Rovio

1 follows it (g) because the mass centre of the ball must be below a certain y coordinate level in

82

order to give permission again to Rovio 2. When this condition is fulfilled Rovio 2 takes again
permission to move (g and h). Finally, in (i) Rovio 2 finds again the pink ball.

Figure 6-14 Play with the pink ball

6.6 VISUAL SERVOING AND NAVIGATION SCENARIO

Visual servoing and navigation scenario described in 4.5. An agent finds the pink, the yellow,
again the pink ball and drives home. Figure 6-15 and Figure 6-16 depict the actions of the agent.
Again the images on the left are taken from the agent while the images on the right from an external
camera which inspects the progress of the mission.

Rovio searches, finds and moves towards the pink ball. While he searches for the yellow ball, he
touches (due to his rotation) and changes the position of the pink ball. He finds the yellow ball and
moves towards it (last image of Figure 6-15).

83

Figure 6-15 Mission 1 (part 1)

After finding the yellow ball, he searches the pink ball again (first image of Figure 6-16). He
approaches the pink ball for the second time and after that he is heading for his base position where
he finally docks (last image of Figure 6-16).

84

17 Execution Tire:

27400

Figure 6-16 Mission 1 (part 2)

6.7 FIND NEw BALL

This chapter tests and evaluates the circle detection and the dynamic color range adjustment

method in three different light conditions. The target object will be a blue ball (Figure 6-17).

85

6.7.1 EXPERIMENTS

6.7.1.1 EXPERIMENT 1

Experiment 1 will be made with all the light on in the room. From a distance of approximately 1
meter the agent is able to “lock™ the target by changing the main Threshold value to 39. The first

text box is displaying the Centre and the Radius of the detected circular shape (Figure 6-18).

o

Figure 6-17 Target locked

Circle Detection 1 | He. of Circles |1 |

Sample] [Take H3V Range]

Threshold = 32

v

Smoothing: Ganssian

Param.l Param.2

T =

Param.3 Param 4

0 £ 0 £

- -

Camm
Threshold 1

1 -~

Threshold 2 Aperturelize
3 kS 5 =

E

i

100

A0

100

AL IR RARE R ANE R ARE |

diccum. Resolation
Min. Distance
Canmy Threshald
dcenm Threshold
Min. Radms

M. Radms

Figure 6-18 Threshold adjusted and Centre and Radius Displayed

When the target is “locked”, the sampling procedure takes the color of the pixels of the central

area of the detected area and calculates the average at it is described in 5.2.1.14 (Figure 6-19).

Circle Detection 1 | Ho. of Cireles |1 |

[Sample H Take H3V Range |

Tlreshold = 33

,

Smoothing: Ganssian

Param.l Param.2

T T

Param 3 Param 4

0 E o E

v -

Carmy
Threshald 1

12

Threshold 2 ApertureSizs
3 = 5 =

£

i

oo

a0

AR| (AR (EF] 40 (48] (4

100

Accum. Resolution
Min, Distance
Canny Threshold
Accum Threshold
Min. Radius

Mazx. Radis

Figure 6-19 Sampling the color

After pressing the button “Take HSV Range”, the HSV bars in the Color tracking panel are

automatically set. The results can be checked on the binary images by ticking the “?” checkbox
86

(Figure 6-20). A simple comparison of Figure 6-20 and Figure 6-17 demonstrates that the blue ball

will be detected successfully.

Color Tracking []Bhe [] Puwple [] Tellow

? Minizmm
H_MIN = 100

v S_MIN = 213
y V_MIN = 176
Mascioum
H_MAX = 220

S_MAX =244

V_MAY = 206

Figure 6-20 Checking the result of the automated color range adjustment

The panel on the right of Figure 6-20 shows the min and max HSV value that the “find new ball”
method will use as input. Pressing the “find new ball” button Rovio will detect the blue ball and the

auto-commanding method will lead the agent in front of the ball.

87

o T ol

i L aren

Figure 6-21 Find new ball

6.7.1.2 EXPERIMENT 2

By turning off some of the lights of the room, the HSV range changes as it adapts to the new
light conditions (color tracking panel in Figure 6-22). From the detected area of the ball can be

sensed that the “find new ball” method will be again successful (Figure 6-22).

88

v. H_MIN = 98
v S_MIN =212

V_MIN = 223

Mazcinmam

H_MAX = 218
S_MAX =243

4 V_MAX =253

Figure 6-22 Checking the result of the automated color range adjustment after the light condition
changing

6.7.1.3 EXPERIMENT 3

By turning off all the lights of the room, the HSV range changes again accordingly. Under these
light conditions it is noted that the circle detection algorithm is not “locking” the target as steadily
as it was used to in the previous light conditions. Moving the Threshold value to 21, the sampling
color values will be the desired because the method is being executed efficiently. Again, from the
detected area of the ball is sensed that the “find new ball” method will be executed with success.
[fhe [Pupe [] Yellow

[w] # Mironn

Exesution Time:253ms

v H_MIN = 98
v S5_MIN = 214

V_MIN = 201

Mazxinmm

H_MAX =218

S_MAX =244

. v V_MAX = 231

Figure 6-23 Checking the result of the automated color range adjustment after turning off all the
lights in the room

The figure below illustrates the different light conditions that were used in the experiments from

an external camera in the room and from Rovio.

89

Figure 6-24 Different light conditions for the experiment (top: Experiment 1, middle: Experiment
2, bottom: Experiment 3)

6.7.2 RESULTS

Table 6-10 presents the HSV min and max values that are automatically generated from this

method. It is easy noticeable that the higher alteration is noticed in the Value parameter. This was

expected because the parameter of Value describes the lightness or the brightness which was

changed by closing the light in the room.

Table 6-10 HSV Color Ranges in the three experiments

H_Min H Max
Experiment 1 100 220
Experiment 2 98 218
Experiment 3 98 218

5 Min 5 Max V_Min V_Max
213 244 176 206
212 243 223 253
214 244 201 231

90

Experiment 3

]
coermer2 | T ——

HH_Max
B H_Min
Experiment 1
o 50 100 150 200 250
Figure 6-25 Hue range in the three experiments
1
——
H5 Max
Experiment 2 — B 5_Min

Experiment 1

190 200 210 220 230 240 250

Figure 6-26 Saturation range in the three experiments

Experiment 3

r

Experiment 1

o] 50 100 150 200 250 300

mY_Max

=Y _Min

Figure 6-27 Value range in the three experiments

91

Figure 6-25, Figure 6-26 and Figure 6-27 show graphically that the change in the Value parameter
was greater due to the alteration of the brightness/lightness conditions.

Finally and most importantly, after this experiment it is concluded that the circle detection and
dynamic color range adjustment method that was developed in this project can effectively detect a

new ball under different light conditions.
6.8 SUMMARY

After the testing and the evaluation procedure, the chapter that follows discusses the results and
explains at the same time the reason why these methods were developed, concluding finally on the

discussion of the successful completion of the objectives of the project.

92

7 DiscussioON AND CONCLUSIONS

7.1 DISCUSSION

WowWee’s Rovios are telepresence agents whose features and characteristics made the
implementations of this project possible. Rovios have been used in several projects (Begum, et al.,
2010) mainly because they can wirelessly be controlled through algorithms that are implemented in
a PC. In this way the agents can behave in a desired way. Their behaviour can be dynamically
adjusted and adapted in unfamiliar environment. As in RoboCup (Asada, et al., 1997), the agents
and the target ball changes position while the robots wirelessly interact and co-operate.

In this project Rovios make use of advanced image processing methods in order to fulfil their
goals. It is known that the effectiveness of the image processing methods depends heavily on the
current light conditions. However, in normal light conditions the agents are able to fulfil their tasks
in different and unfamiliar environments. The autonomous ability of the agent to recognise colors in
different and complex backgrounds make the completion of difficult tasks, like servoing and
navigation scenario, possible.

The need of an efficient and effective GUI will be present even if humans manage to implement
totally autonomous agents. Nowadays, this goal is still far. As in this project, agents were able to
complete small tasks having a completely robotic autonomous behaviour. Arkin, 1998, suggested
that behaviours serve the basic building blocks for robotic actions. Therefore, the GUI that
commands or triggers specific robotic behaviour must be easy and user-friendly for the perspective
operator. Furthermore, the GUI informs the user or the operator for the condition or the status of the
robot and provides useful information for the environment or the objects nearby.

In this concept, crucial characteristic of the GUI is the imageboxes that host the acquired images
from the agents. According to the current mission of the robot, useful information is displayed on
the image like the execution time (time that each image was processed before been displayed), the
current generated auto-command, the position of the target or the frame of the recognised object-
blob. For the user or the operator, the images are the main source of information while with them he
can inspect the actions of the robot.

The implemented GUI is video-centric. As Drury, et al., 2010, suggests, similarly to our GUI,
the video window is the most predominant feature with the most important information located on
or around the video screen.

The GUI has two kinds of buttons. There are the buttons that simply command the agent and
buttons that trigger specific autonomous behaviours. The combination of these buttons results to a

semi-autonomous robotic behaviour. In case of collision, the operator can interfere and help the

93

agent to resolve some issues. In addition, when the result from the circle detection and the dynamic
color range adjustment is not satisfactory, the operator can again adjust properly the color tracking
bars for a better and more efficient result.

The developed GUI is parametrical and thus very flexible. Various panels have been created
giving the operator the ability to adjust them properly for different results. With the tracking color
panel the operator can quickly and effectively find the color range of a desired blob and assign to
one of the five available Rovios to approach it in order to have a closer look of the current object.
The implemented GUI and the CASTER interface (Kadous, et al., 2006) incorporate different
arrangements of small sensor feeds and status readouts placed around the interface.

One of the autonomous behaviours that the GUI can trigger is the navigation and exploration
based on the InfaRed sensor that the agent has. The IR sensor is used to avoid possible obstacles
and the camera is used just for inspection. Again, here the autonomous behaviour can be
transformed in semi-autonomous in case that Rovio gets stuck somewhere by disabling the auto-
commanding and for a while help the agent with direct manual commands. The application has the
ability to enable two Rovios to navigate around a place at the same time. By adding obstacles on the
way of the robots the effectiveness of these methods was successfully tested.

The IR based wandering is the only method that does not use the acquired image as an input. All
the other tasks have the acquired images as the main input. An image has a lot of information,
although the main difficulty is to make the robot to recognise a part of it and act accordingly.

The edge detection method and its parametric panel give the ability of exploration with higher
accuracy. By adjusting the bars, edges and lines are detected that cannot be seen from the original
un-processed image. Furthermore, the result showed that the edge detection can be used effectively
while the agent is moving.

The color tracking method and its panel is helping the user of the GUI to get familiar with the
HSV color format. There are three fixed color ranges, blue, purple and yellow, and another choice
where by choosing it the user can search for specific color combinations. The panel can be adjusted
with great accuracy and can even detect very small blobs on the incoming image. This feature helps
the developer to understand how colors change in different light conditions and as a result how
machine vision can effectively be applied for real applications and tasks, like the ones in this
project.

In comparison with the suggested technique from Masselli, et al., 2004, we detect the ball based
on the color information. Bach, et al., 2005, and the implemented method in this project are taking
advantage of the fact that the color of the ball is known.

Implementing a pink color tracking algorithm, the display of the mass centre of the detected pink

blob and the segmentation of the image, commanding is auto-generated according to the position of
94

the displayed mass centre on the image. The number of frames that were processed per second for
this method (approximately 5 per second in the GUI) guarantees a robust method for detecting and
approaching a pink blob-ball even from a distance.

Bach’s color based method succeeds a rate of 25 FPS. The ball detection method of this project
succeeds such a high rate of FPS. However, the rate of FPS in the GUI of the ball detection method
is significantly decreased mainly because of the multiple threads that are being executed
asynchronously.

These implementations have been done in an environment with various shades of yellow. The
dominant color of the background is yellow. After implementing the method for detecting and
approaching the pink ball, a method for detecting and approaching a yellow ball was developed just
by changing the input color range in order to explore the distractions that will be present in a noisier
environment. As it was expected, by testing these two methods, it was understood that the rate of
success for the pink ball was higher that this for the yellow. It is easier to detect and follow a pink
blob in a general yellow background than detect and follow a yellow blob in a yellow background.
There were times that the method was running effectively without interferences and there were
times that the agent was being misled.

In such conditions the color characteristic is not enough. An object can be described also from its
shape, in our case the circularity. This was the main reason that led to the implementation of the
circle detection method. In case that the robot is unable to detect the color characteristic, either
because of the noisy background or the poor light conditions, the circle detection panel can be
adjusted to detect the desired ball (circular object) take the average color of its area in HSV and
create dynamically a new HSV color range for detection. Again, at that point the GUI gives the
flexibility to the user to correct the HSV values in case that he is not pleased with the result of the
automated procedure.

The implemented circle detection method uses the Hough transform. Martins, et al., 2006, proves
that the Hough transform is a good method to detect circular shaped objects and is relatively
unaffected by image noise.

As in Zhang’s (2009) proposed method, the Hough transform is introduced to locate the position
of the ball in order to reduce the influence of the complex environment. In this project, the Hough
transform is used again to locate the position of the ball, however, it is used in order to sample the
color of the detected ball.

The circle detection method was not used for auto-commanding the agent because the circle
detection is much slower than the color detection method and also because of its instability.

Furthermore, the circle detection method can “lock™ an irrelevant object while the color detection

95

depends only on a good and precise color range setting as an input. The instability of the circle’s
detection method is being overcome from the color sampling when the desired object is locked.

More complicated scenarios were created after implemented the methods for detecting and
approaching the pink and the yellow ball that were based on those basic ones. The visual servoing
and navigation scenario is a task that requires higher level of autonomous behaviour. The
similarities between the implemented navigation scenario and Begum’s, et al., 2010, method are the
use of omnidirectional robots and the landmark-based navigation.

Communication among agents has been succeeded through the ball play scenario and the
dynamic characteristic of swapping agents during a mission. In the ball play scenario at least two
agents have to exchange signals-permissions in order to detect and “kick” the ball. Every time that
an agent “kicks” the ball the ball changes position and the other agent has to search, detect and
“kick” the ball again. This scenario can involve all the available agents by changing agents

sequentially (Rovio 1 will give permission to Rovio 2, Rovio 2 to Rovio 3 and so on).
7.2 FUTURE RESEARCH AND IMPROVEMENTS

Future research, work and improvements will be presented. These thoughts can be unified under
a new postgraduate project that will have the current project as a base and starting point.

The current project focused more in color detection techniques. Therefore, future
implementations should explore advanced shape detection techniques in the same way that the
parametrical circle detection was implemented. The objective should be not only to detect shapes
(squares, triangles, polygons) over clear view but also under different angles.

Combining the color and shape detection methods the agents should be able to detect a greater
variety of objects or landmarks for implementing more complex co-operating scenarios. For
instance, different weighting will be given to the different colors and shapes, so the agent should
recognise and categorise the different objects-landmarks.

The existing parametrical GUI can be upgraded and enriched with these additional
characteristics and functionalities.

Commands could be given phonetically. Therefore, the triggering of the missions could be
implemented through buttons and sound. Rovios could respond accordingly after each command
acknowledgement by playing back responses from the built-in speakers.

Finally, an improvement in human-robot interaction can be implemented and explored by
making Rovio able to follow a simple conversation about the recognised objects-landmarks. For
example, Rovio could be phonetically commanded to approach the closest object-landmark,
respond after its success with a sound message to the operator, after that the operator could ask to

give report of the object where the agent should return a sound message reporting its color and its
96

shape or its inability to generate response. Applying different importance to the various objects, the
operator should be able to request the search of the object-landmark with the highest or lowest

importance factor.
7.3 CONCLUSIONS

The main aim of this dissertation was to create an autonomous, co-operative telerobotic agent
framework for WowWee Rovios. The GUI that was developed concentrates all the functionalities
that were applied to the available agents while triggers behaviours that can autonomously be
executed even in unfamiliar environments.

The first objective was to explore and study the autonomous behaviour of Rovios. The way that
the project was programmed and communicated with these agents applied to them autonomous
behaviour by performing desired tasks in an environment without continuous human guidance.
Rovios gather information either from their camera or the IR sensor and can work without human
intervention for an extended period. Furthermore, the agents can sustain their survival as they can
use their base as a charging base.

The second objective was the creation of an interface for the WowWee Rovios to communicate
to an external party and/or other Rovios. The GUI that was created allows the operator to manually
control the various agents in a variety of ways while inspects them basically through the acquired
images. Furthermore, the GUI triggers the execution of specific tasks that require the interaction
and the co-operation of the agents for successful completion.

The third objective was to achieve a basic function of autonomous exploration in unfamiliar
environments, avoiding obstacles safely. By using the IR sensor, Rovios were commanded in such a
way that can navigate around the room avoiding obstacles that they find in their way. Additionally,
it is highly feasible having two Rovios exploring the same environment at the same time while their
cameras acquire useful information. A more advanced navigation and exploration scenario was
created using specific landmarks in the environment that is to be explored.

The fourth objective was to use advanced image processing algorithms to identify and describe
objects within unfamiliar environments. Not only advanced image processing algorithms to identify
specific shapes and colors were used but also the parametrical GUI provides the flexibility to the
operator to adapt Rovios functionalities in dynamic and unfamiliar environments.

The fifth objective was to code a knowledge base to store the robot’s experience. The way that
the developed framework is programmed and structured enables Rovios to learn and complete a
task under different conditions each time. By changing the light conditions or by changing the
position of the landmarks, Rovios can still fulfil their goals.

97

The last objective was to achieve basic communication, and co-operation between at least two
robotic agents. The task where two Rovios interact and communicate through their game with the
pink ball and the dynamic feature of swapping agents during execution time fulfil this objective.

Overall, this project introduced me to the interesting and challenging areas of Artificial
Intelligence, Machine Learning and Robot Vision, and their techniques. Furthermore, the use of
Open CV libraries made me appreciate and be familiar with latest advances in image processing
methods while programming in an object-oriented language advanced my programming skills using

modern tools and programming techniques.

98

8 BIBLIOGRAPHY

Arkin R. C. Behavior-based Robotics - Cambridge, MA, USA : MIT Press, 1998.

Asada M. [et al.] RoboCup:The Robot World Cup Initiative , Proceedings of the first international
conference on Autonomous agents. - New York : ACM Press, 1997. - pp. 340-347.

Ashutosh G. [et al.] Machine Learning in Computer Vision - Springer, 2005.

Bach Joscha and Jungel Matthias Using pattern matching on a flexible, horizon-aligned grid for
robotic vision, LNCS Multilevel Seed Growing Segmentation. - 2005. - p. Springer.

Begum Afroza, Lee Minkyoung and Kim Young J A Simple Visual Servoing and Navigation
Algorithm for an Omnidirectional Robot, Human-Centric Computing (HumanCom), 2010
3rd International Conference. - 2010.

Bradski Gary and Kaehler Adrian Learning OpenCV - O'Reilly, 2008.

Canny J. A computational approach to edge detection, IEEE Transactions on Pattern Analysis and
machine intelligence 8. - 1986. - pp. 679-714.

Comley R., Sebastian P. and Voon Yap Vooi The Effect of Colour Space on Tracking
Robustness, Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE
Conference. - 2008.

Drury J [et al.] Improving Human- Robot Interaction through Interface Evolution, 2010. - pp. 183—
202.

Drury J. [et al.] Evaluating Human-Robot Interaction in a Search-and-Rescue Context,
Proceedings of the Performance Metrics for Intelligent System (PerMIS) Workshop. -
2003.

Farris J. [et al.] Co-evolving Soccer Softbot Team Coordination with Genetic Programming -
1998.

Frintrop S. [et al.] Robust Object Detection at Regions of Interest with an Application in Ball
Recognition, Proceedings of the 2005 IEEE International Conference on Robotics and
Automation. - Barcelona, Spain : [s.n.], 2005.

Gonzalez Rafael and Woods Richard E Digital Image Processing - [s.l.] : Prentice Hall Press,
2002.

Gopalakrishnan Arati , Greene Sheldon and Sekmen Ali Vision-based Mobile Robot Learning
and Navigation, IEEE International Workshop on Robots and Human Interactive
Communication. - 2005.

Holly Yanco A. [et al.] Essential Features of Telepresence Robots - 2011.

Itsuki N. Soccer Server: a simulator for RoboCup, In JSAI Al-Symposium. - 1995.

99

Kadous M. W., Sheh Ka-Man R. and Sammut. C. Effective user interface design for rescue
robotics, Proceedings of the ACM/IEEE Conference on Human-Robot Interaction. - 2006.

Kim Whee Kuk and Yi Byung-Ju The Kinematics for Redundantly Actuated Omni-directional
Mobile Robots, Proceedings of the 2000 IEEE international Conference on Robotics B
Automation. - San Francisco, CA : [s.n.], 2000.

Martins D. A., Neves R. J. and Pinho A. J. Real-time generic ball recognition in RoboCup
domain - 2006.

Masselli A., Treptow A. and Zell A. Real-Time Object Tracking for Soccer-Robots without Color
Information, Robotics and Autonomous Systems. - [s.1.] : Elsevier, 2004. - pp. 41-48.

Mataric Maja J. Interaction and Intelligent Behavior - 1994.

Newborn Monty Deep Blue: An Artificial Intelligence Milestone - [s.l.] : Springer, 2004.

Nilsson Nils J. Artificial Intelligence: A new Synthesis - San Fransisco, California: Morgan
Kaufmann, 1998.

Norvig Peter and Russell Stuart Artificial Intelligence: A Modern Approach. Prenctice - [s.l.] :
Prenctice Hall, 1995.

Salustowicz R., Schmidhuber J. and Wiering M. Learning Team Strategies: Soccer Case Studies
- 1998.

Stone P. and Veloso M. Layered Approach to Learning Client Behaviors in the Robocup Soccer
Server, Applied Artificial Intelligence. - 1998. - pp. 12(2):165-188.

Umbaugh S. E. Computer Vision and Image Processing - [s.l.] : Prentice Hall, 1998.

Zalud Ludek ARGOS System for Heterogeneous Mobile Robot Teleoperation, In Proceedings of
IROS'2006. - 2006. - pp. 211-216.

Zhang H., Wu Y. and Yang F. Ball Detection Based on Color Information and Hough Transform,

International Conference on Artificial Intelligence and Computational Intelligence. - 20009.

100

APPENDIX A — WINFORM APPLICATION CODE (VISUAL
C#)

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Drawing.Imaging;
using System.Ling;

using System.Text;

using System.Windows.Forms;

using System.Diagnostics;

using System.Net;

using System.IO;

using System.Threading;

using System.Runtime.InteropServices;
using Emgu.CV;

using Emgu.CV.UI;

using Emgu.CV.Structure;

using Emgu.Util;

using Roviolib;

namespace rovio_1

{

public partial class Forml : Form

{

/********************************/

/* Public Variables */
/********************************/

/***\

Image processing Choices

0- Default/Normal

1- Edge Detection

2- Color Detection

3- Segmenting

4- Pink ball commanding (Rovio 2)
5- Color Tracking

6- Pink ball commanding (Rovio 1)
7- Circle Detection (Rovio 1)

8- PLAY WITH THE BALL

9- Yellow Ball commanding (Rovio 1)
10- Yellow Ball commanding (Rovio 2)
11- Mission 1 (pink-> ball->yellow->pink->) for Rovio 1
12- New Ball commanding (Rovio 1)

¥ X X X X X X X X ¥ X X X ¥ ¥ ¥ ¥
¥ K K K XK K K K X X X X X ¥ ¥

**/
int processingChoice = 0;

//Rovio 1 URL
static string roviolURL = "http://192.168.2.11";

101

//Rovio 2 URL
static string rovio2URL
//Rovio 3 URL
static string rovio3URL
//Rovio 4 URL
static string rovio4URL
//Rovio 5 URL
static string rovio5URL

"http://192.168.2.12";

"http://192.168.2.14";

"http://192.168.2.15";

"http://192.168.2.16";

//UL, declare a delegate: "display delegates"

public delegate void MyDelegateMethod(string coordinates);
public delegate void MyDelegateMethodl();

public delegate void MyDelegateMethod2();

public delegate void MyDelegateMethod3(int battery);

public delegate void MyDelegateMethod4(int battery2);

public delegate void MyDelegateMethod5(decimal distance);
public delegate void MyDelegateMethod6();

public delegate void MyDelegateMethod7(string circlePosition);
public delegate void MyDelegateMethod8(string color);

//for circle detection public variables and flags
Hsv hsv = new Hsv();

Point centre = new Point();

bool button20Clicked = false;

bool button45Clicked = false;

//set HSV trackbars from automatic color range adjustment
int hue_min = 0;

int sat_min = 0;

int val_min = 0;

int hue_max = 255;

int sat_max = 255;

int val_max = 255;

//parameters for circle detection

//number of circles

int N = 1;

int thresholdCircle=138;

int paraml = 11, param2 = 11, param3 = @, param4 = 0;

int thresholdl = 1, threshold2 = 3, apertureSize

//hough parameters

int
accResolution=2,minDist=100,cannyThreshold=5,accThreshold=50,minRadius=0,maxRadius=100;

1}
("l
.

//edge detection parameters
int edparaml = 70, edparam2 = 60;

//segmentation parameters
int segments = 5;

//ir wander 1 thread start/pause
int lockWanderl=0;

//ir wander 2 thread start/pause
int lockWander2 = 0;

//ir wander 1&2 thread start/pause

102

*/

int lockWander = 0;

//enable flab tab2
public bool enableTab2 = false;

/* Create rovio object for rovio 1 for the first time */

RovioController roviol = new RovioController("username", "password", roviolURL);
/* Create rovio object for rovio 2 for the first time */
RovioController rovio2 = new RovioController("username", "password", rovio2URL);
/* Create rovio object for rovio 3 for the first time */
RovioController rovio3 = new RovioController("username", "password", rovio3URL);
/* Create rovio object for rovio 4 for the first time */
RovioController rovio4 = new RovioController("username", "password", rovio4URL);
/* Create rovio object for rovio 5 for the first time */

RovioController rovio5 = new RovioController("username", "password", rovioSURL);

//mission 1 flag
int missionlFlag = 0;

//go home flag
int goHomeFlag = ©;

//play Flag
int playFlag = 0;

/* Initialisation of the Wander Thread */
Thread wanderThreadl = new Thread(new ThreadStart(wanderMethodl));
Thread wanderThread2 = new Thread(new ThreadStart(wanderMethod2));

/* Variables for Battery Status Rovio 1 & 2 */
public int battery, charging, batteryl, chargingl;

/* Stop/Play flag for wandering Rovio 1& 2 */
bool wanderFlag = false;
bool wanderFlagl = false;
bool wanderFlag2 = false;

/* Integers to hold first character of desired strings from GetReport rovio 1 & 2

int firstCharacterCharg, firstCharacterBatl, firstCharacterChargl;

/* Strings from GetReport for rovio 1 & 2 */
string str_bat, str_charg, str_batl, str_chargl;

/* Initialisation of rovio's speed (1-fastest,10-slowest) */
public static int speed = 1;

/* Positioning Coordinates */
public static int poslx, posly, pos2x, pos2y;
public static decimal posltheta, pos2theta;

/* String Variables for the wander methods */
public static string str_irl, str_ir2;
public static int flag, firstCharacterl, firstCharacter2;

public Forml()
{

}

InitializeComponent();

103

private void Forml_Load(object sender, EventArgs e)

{

/* Thread for taking images from Rovio 1 */

Thread takeImagesThreadl = new Thread(new ThreadStart(takeImagesl));

takeImagesThreadl.IsBackground = true; //for the thread to close with the
application

takeImagesThreadl.Start();

//takeImagesThreadl.Priority = ThreadPriority.Highest;

/* Thread for taking images from Rovio 2 */

Thread takeImagesThread2 = new Thread(new ThreadStart(takeImages2));

takeImagesThread2.IsBackground = true; //for the thread to close with the
application

takeImagesThread2.Start();
//takeImagesThread.Priority = ThreadPriority.Highest;

/* Positioning Thread */

Thread positioning_and_collisionAvoidanceThread = new Thread(new
ThreadStart(positioning_and_collisionAvoidance));

positioning_and_collisionAvoidanceThread.IsBackground = true;

positioning_and_collisionAvoidanceThread.Start();

//positioningThread.Priority = ThreadPriority.Lowest;

/* Battery Monitoring Thread */

Thread batteryMonitoringThread = new Thread(new ThreadStart(batteryMonitoring));

batteryMonitoringThread.IsBackground = true;
batteryMonitoringThread.Start();

}
/* Button for Displaying the main getReport Rovio 1 */
private void button4@_Click(object sender, EventArgs e)
{
MessageBox.Show(roviol.GetReport());
}
/* Button for Displaying the main getReport Rovio 2 */
private void buttonl_Click(object sender, EventArgs e)
{
MessageBox.Show(rovio2.GetReport());
}
/* selecting speed of Rovio */
private void trackBarl@_Scroll(object sender, EventArgs e)
{
trackBarle.SetRange(1, 10);
speed = trackBarle.Value;
}

//edge detection first parameter
private void trackBarl_Scroll(object sender, EventArgs e)

{

trackBarl.SetRange(0, 500);
labell7.Text = "Thresh = " + Convert.ToInt32(trackBarl.Value);

104

edparaml = trackBarl.Value ;

}

private void trackBar2_Scroll(object sender, EventArgs e)

{
trackBar2.SetRange(9, 500);
labell8.Text = "ThreshLinking = " + Convert.ToInt32(trackBar2.Value);
edparam2 = trackBar2.Value;

}

private void trackBar3_Scroll(object sender, EventArgs e)
{
trackBar3.SetRange(2, 10);
label20.Text = "Segments = " + Convert.ToInt32(trackBar3.vValue *
trackBar3.Value);
segments = trackBar3.Value;

}

//min hsv color
private void trackBar4_Scroll(object sender, EventArgs e)

{
trackBar4.SetRange(9, 256);
label23.Text = "H_MIN = " + Convert.ToInt32(trackBar4.Value);
hue_min = trackBar4.Value;

}

private void trackBar5_Scroll(object sender, EventArgs e)

{
trackBar5.SetRange (9, 256);
label25.Text = "S_MIN = " + Convert.ToInt32(trackBar5.Value);
sat_min = trackBar5.Value;

}

private void trackBar6_Scroll(object sender, EventArgs e)

{
trackBaré6.SetRange(0, 256);
label27.Text = "V_MIN = " + Convert.ToInt32(trackBaré6.Value);
val_min = trackBar6.Value;

}

//max hsv color
private void trackBar9_Scroll(object sender, EventArgs e)

{
trackBar9.SetRange(0, 256);
label24.Text = "H_MAX = " + Convert.ToInt32(trackBar9.Value);
hue_max = trackBar9.Value;

}

private void trackBar8 Scroll(object sender, EventArgs e)

{
trackBar8.SetRange(0, 256);
label26.Text = "S_MAX = " + Convert.ToInt32(trackBar8.Value);
sat_max = trackBar8.Value;

}

private void trackBar7_Scroll(object sender, EventArgs e)

{
trackBar7.SetRange(0, 256);
label28.Text = "V_MAX = " + Convert.ToInt32(trackBar7.Value);
val_max = trackBar7.Value;

}

//no of circles detected

105

private void numericUpDownl_ValueChanged(object sender, EventArgs e)

{
}

N = (int)numericUpDownl.Value;

//threshold in edge detection
private void trackBarll_Scroll(object sender, EventArgs e)

{

trackBarll.SetRange(9, 256);

thresholdCircle = trackBarll.Value;

labelll.Text = "Threshold = " + Convert.ToInt32(trackBarll.Value)
}

//smothing gaussian parameters

private void numericUpDown2_ValueChanged(object sender, EventArgs e)

{
if(numericUpDown2.Value%2==1)
paraml = (int)numericUpDown2.Value;
}
private void numericUpDown3_ValueChanged(object sender, EventArgs e)
{
if (numericUpDown3.Value % 2 == 1)
param2 = (int)numericUpDown3.Value;
}
private void numericUpDown4_ValueChanged(object sender, EventArgs e)
{
param3 = (int)numericUpDown4.Value;
}
private void numericUpDown5_ValueChanged(object sender, EventArgs e)
{
param4 = (int)numericUpDown5.Value;
}

//canny in circles detection
private void numericUpDown8_ ValueChanged(object sender, EventArgs e)

{

thresholdl = (int)numericUpDown8.Value;
}
private void numericUpDown7_ValueChanged(object sender, EventArgs e)
{

threshold2 = (int)numericUpDown7.Value;
}
private void numericUpDown6_ValueChanged(object sender, EventArgs e)

size

{

if (numericUpDown6.Value % 2 == 1)

apertureSize = (int)numericUpDown6.Value;

}

//hough parameters
private void numericUpDown9_ValueChanged(object sender, EventArgs e)
resolution

{
}

accResolution = (int)numericUpDown9.Value;

private void numericUpDownl1® ValueChanged(object sender, EventArgs e)

)

//paramet 1

//paramet 2

//paramet 3

//paramet 2

//threshold 1

//threshold 2

//aperture

//acc

//min

106

distance

{
minDist =(int)numericUpDown1@.Value;
}
private void label42 Click(object sender, EventArgs e)
{
cannyThreshold = (int)numericUpDownll.Value;
}
private void label43 Click(object sender, EventArgs e)
{
accThreshold = (int)numericUpDownl2.Value;
}
private void label44_Click(object sender, EventArgs e)
{
minRadius = (int)numericUpDownl3.Value;
}
private void label45 Click(object sender, EventArgs e)
{
maxRadius = (int)numericUpDownl4.Value;
}
111711117
/117117117
111711117
[1177177777777777777777777771717177777
// //
// Manual Control Rovio 1 //
// //
[11777177717777777777777777771777177777
private void button31_Click_1(object sender, EventArgs
{
roviol.ManualDrive(0, speed);
}
private void button38_Click_1(object sender, EventArgs
{
roviol.ManualDrive(1, speed);
}
private void button37_Click_1(object sender, EventArgs
{
roviol.ManualDrive(2, speed);
}
private void button36_Click_1(object sender, EventArgs
{
roviol.ManualDrive(4, speed);
}
private void button39_Click_1(object sender, EventArgs
{
roviol.ManualDrive(3, speed);
}

private void button35_Click_1(object sender, EventArgs

{

/

/

e)

e)

e)

e)

/canny threshold

/accum threshold

//min radius

//max radius

//stop

//forward

//backwards

//right

//left

//forward right

107

roviol.ManualDrive(8, speed);

}

private void button34_Click_1(object sender, EventArgs e) //forward left
{

}

private void button32_Click_1(object sender, EventArgs e) //backwards right
{

}

roviol.ManualDrive(7, speed);

roviol.ManualDrive(10, speed);

private void button33_Click_1(object sender, EventArgs e) //backwards left
{

}

roviol.ManualDrive(9, speed);

private void button3@_Click_1(object sender, EventArgs e) //head Up
{

}

roviol.ManualDrive(11, speed);

private void button29_Click_1(object sender, EventArgs e) //head down
{

}

private void button28_Click_1(object sender, EventArgs e) //head middle
{

}

roviol.ManualDrive(12, speed);

roviol.ManualDrive(13, speed);

private void button27_Click_1(object sender, EventArgs e) //rotate right
{

}

roviol.ManualDrive(18, speed);

private void button26_Click_1(object sender, EventArgs e) //rotate left
{

roviol.ManualDrive(17, speed);

}

/111171117

/11111117

/111171117
[11177177771777777777177777177777777717
// //
// Manual Control Rovio 2 //
// //

L1110 77007777 777177771777777777

private void buttonl@_Click(object sender, EventArgs e) //stop
{

}

rovio2.ManualDrive(@, speed);

private void button2_Click(object sender, EventArgs e) //forward

{
}

rovio2.ManualDrive(1, speed);

private void button5_Click(object sender, EventArgs e) //backwards

108

{
}

rovio2.ManualDrive(2, speed);

private void button4_Click(object sender,

{
}

rovio2.ManualDrive(4, speed);

private void button3_Click(object sender,

{
¥

rovio2.ManualDrive(3, speed);

private void button6_Click(object sender,

{
¥

rovio2.ManualDrive(8, speed);

private void button7_Click(object sender,

{
}

rovio2.ManualDrive(7, speed);

private void button9_Click(object sender,

{
¥

rovio2.ManualDrive(10, speed);

private void button8_Click(object sender,

{
¥

rovio2.ManualDrive(9, speed);

private void buttonll_Click(object sender,

{
}

rovio2.ManualDrive(11, speed);

private void buttonl12_Click(object sender,
{

}

rovio2.ManualDrive(12, speed);

private void button13_Click(object sender,

{
¥

rovio2.ManualDrive(13, speed);

private void button14_Click(object sender,
{

}

rovio2.ManualDrive(18, speed);

private void button15_Click(object sender,
{

rovio2.ManualDrive(17, speed);

}

117717117

117717117

111717117
[117777777717717171777717177171717
// (Rovio 1) //

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

e)

e)

e)

e)

e)

e)

e)

e)

e)

e)

//right

//1left

//forward right

//forward left

//backwards right

//backwards left

//head Up

//head down

//head middle

//rotate right

//rotate left

109

// IR-based Wandering Method //

// //
// & //
// //
// Button_click //
// //

IITTT1077777777771777117777171177

private void button42_Click(object sender, EventArgs e)

{

if (wanderFlagl == false && lockWanderl==0)
{
wanderFlagl = true;
//change image to pause
button42.Image = Image.FromFile(@"C:\Documents and
Settings\kat@91\Desktop\Rovio C# Project\Rovio C# Project\rovio 1\images\pause.jpg");
//activate IR detector
roviol.ActivateIRDetector();
wanderThreadl.Start();
lockWanderl = 1;

}
else if (wanderFlagl == false & lockWanderl == 1)

{
wanderFlagl = true;
//change image to pause
button42.Image = Image.FromFile(@"C:\Documents and
Settings\kat@91\Desktop\Rovio C# Project\Rovio C# Project\rovio 1\images\pause.jpg");
//activate IR detector
//roviol.ActivateIRDetector();
wanderThreadl.Resume();
lockWanderl = 1;
}
else if (wanderFlagl == true)
{
wanderFlagl = false;
button42.Image = Image.FromFile(@"C:\Documents and
Settings\kat@91\Desktop\Rovio C# Project\Rovio C# Project\rovio 1\images\play.jpg");
//roviol.DeactivateIRDetector();
wanderThreadl.Suspend();

}

}

111711117

/117117117

111711117
[1171177777777771777777177777117177
// (Rovio 2) //
// IR-based Wandering Method //
// //
// & //
// //
// Button_click //
// //

11177777777 7771777777771777777

//button click method wander Rovio 2
private void button19_Click(object sender, EventArgs e)

{

110

if (wanderFlag2 == false && lockWander2==0)
{
wanderFlag2 = true;
//change image to pause
buttonl19.Image = Image.FromFile(@"C:\Documents and
Settings\kat@91\Desktop\Rovio C# Project\Rovio C# Project\rovio 1\images\pause.jpg");
//activate IR detector
rovio2.ActivateIRDetector();
wanderThread2.Start();
lockWander2 = 1;

else if (wanderFlag2 == false && lockWander2 == 1)
{
wanderFlag2 = true;
//change image to pause
buttonl19.Image = Image.FromFile(@"C:\Documents and
Settings\kat@91\Desktop\Rovio C# Project\Rovio C# Project\rovio 1\images\pause.jpg");
//activate IR detector

wanderThread2.Resume();
lockWander2 = 1;

else if (wanderFlag2 == true)
{
wanderFlag2 = false;
buttonl19.Image = Image.FromFile(@"C:\Documents and
Settings\kat@91\Desktop\Rovio C# Project\Rovio C# Project\rovio 1\images\play.jpg");
//rovio2.DeactivateIRDetector();
wanderThread2.Suspend();

//wander method for rovio 1 for thread
public static void wanderl()

{
RovioController roviol = new RovioController("username", "password", roviolURL);
while (true)
{
str_irl = roviol.GetReport();
firstCharacterl = str_irl.IndexOf("flags");
str_irl = str_irl.Substring(firstCharacterl + 9, 1);
if (str_irl != "5")
{
roviol.ManualDrive(17, speed); //rotate left
roviol.ManualDrive(@, speed); //stop
}
}
}

//wander method for rovio 2 for thread

111

public static void wander2()

{
RovioController rovio2 = new RovioController("username", "password", rovio2URL);
while (true)
{
str_ir2 = rovio2.GetReport();
firstCharacter2 = str_ir2.IndexOf("flags");
str_ir2 = str_ir2.Substring(firstCharacter2 + 9, 1);
if (str_ir2 1= "5")
{
rovio2.ManualDrive(17, speed); //rotate left
rovio2.ManualDrive(@, speed); //stop
}
}
}

//wander method for rovio 1
public static void wanderMethodl()

{
RovioController roviol = new RovioController("username"”, "password”, roviolURL);
while (true)
{
str_irl = roviol.GetReport();
firstCharacterl = str_irl.IndexOf("flags");
str_irl = str_irl.Substring(firstCharacterl + 9, 1);
if (str_irl == "5")
{
roviol.ManualDrive(1, speed); //forward
}
else
{
roviol.ManualDrive(17, speed); //rotate left
roviol.ManualDrive(@, speed); //stop
}
}
}

//wander method for rovio 2
public static void wanderMethod2()
{
RovioController rovio2 = new RovioController("username", "password", rovio2URL);
while (true)
{
str_ir2 = rovio2.GetReport();
firstCharacter2 = str_ir2.IndexOf("flags");
str_ir2 = str_ir2.Substring(firstCharacter2 + 9, 1);

if (str_ir2 == "5")
{
rovio2.ManualDrive(1, speed); //forward
}
else
{

112

rovio2.ManualDrive(17, speed); //rotate left
rovio2.ManualDrive(@, speed); //stop

}
}

}

/11111117

111111717

/11111117
[171777171777777771717771717171171177
// //
// Positioning //
// AND //
// collisionAvoidance //
// //

[I1711777777777717777771717777171777
public void positioning_and_collisionAvoidance()

{

decimal previousDistance=0;
while (true)

{

//create the two rovio objects -- IMPORTANCE OF CREATING THE NEW OBJECTS IN
TEH NEW THREAD

RovioController roviol = new RovioController("username", "password",
roviolURL);

RovioController rovio2 = new RovioController("username", "password",
rovio2URL);

//rovio 1 get report

string strRoviol = roviol.GetReport();

//rovio 2 get report

string strRovio2 = rovio2.GetReport();

string strix = "0";
string strly = "0";
string strltheta = "0";
string str2x = "0";
string str2y = "0";
string str2theta = "0";
int last = ©;

//averaging the positions- initialisation
int aveposlx = 0;
int aveposly = 0;

decimal aveposltheta = 0;
int avepos2x = 0;
int avepos2y = 0;
decimal avepos2theta = 0;

//averaging the positions- initialisation
int sumposix = 0;
int sumposly = 0;

decimal sumposltheta = 0;
int sumpos2x = 0;
int sumpos2y = 0;
decimal sumpos2theta = 0;

113

//number of samples taken
int N=10;

for(int i=1;i<=N;i++)

{

//rovio 1 get report
strRoviol = roviol.GetReport();
//rovio 2 get report
strRovio2 = rovio2.GetReport();

//get the x and y coordinates of the two rovios
//get Rovio 1 x coordinate

int first = strRoviol.IndexOf("x=");

string tempString = strRoviol.Substring(first + 2,
last = tempString.IndexOf("|");

strix = tempString.Substring(@, last);

poslx = Convert.ToInt32(strix);

sumposlx += poslx;

//get Rovio 1 y coordinate

first = strRoviol.IndexOf("y=");

tempString = strRoviol.Substring(first + 2, 8);
last = tempString.IndexOf("|");

strly = tempString.Substring(@, last);

posly = Convert.ToInt32(strly);

sumposly += posly;

//get Rovio 1 theta coordinate

first = strRoviol.IndexOf("theta=");

tempString = strRoviol.Substring(first + 6, 8);
last = tempString.IndexOf("|");

strltheta = tempString.Substring(@, last);
posltheta = Convert.ToDecimal(striltheta);
sumposltheta += posltheta;

//get Rovio 2 x coordinate

first = strRovio2.IndexOf("x=");

tempString = strRovio2.Substring(first + 2, 8);
last = tempString.IndexOf("|");

str2x = tempString.Substring(@, last);

pos2x = Convert.ToInt32(str2x);

SUMpos2X += poOs2X;

//get Rovio 2 y coordinate

first = strRovio2.IndexOf("y=");

tempString = strRovio2.Substring(first + 2, 8);
last = tempString.IndexOf("|");

str2y = tempString.Substring(@, last);

pos2y = Convert.ToInt32(str2y);

sSumpos2y += pos2y;

//get Rovio 2 theta coordinate

first = strRovio2.IndexOf("theta=");
tempString = strRovio2.Substring(first + 6, 8);
last = tempString.IndexOf("|");

str2theta = tempString.Substring(0®, last);

8);

114

pos2theta = Convert.ToDecimal(str2theta);
sumpos2theta += pos2theta;

}

//calculating teh average values
aveposlx = sumposlx / N;
aveposly = sumposly / N;
aveposltheta = sumposltheta / N;

avepos2x = sumpos2x / N;
avepos2y = sumpos2y / N;
avepos2theta = (decimal)sumpos2theta / N;

displayPosRoviol(" (" + Convert.ToString(aveposlx) + "," +

Convert.ToString(aveposly) + ") " + "theta :" +
Convert.ToString(TruncateFunction(posltheta,2)));

displayPosRovio2("(" + Convert.ToString(avepos2x) + "," +
Convert.ToString(avepos2y) + ") " + "theta :" + Convert.ToString(TruncateFunction(pos2theta,
2)));

int xd = avepos2x - aveposlx;

int yd = avepos2y - aveposly;

decimal distance = (decimal) Math.Sqrt(xd * xd + yd * yd);

//display distance
displayDistance(TruncateFunction(distance,2));

//if (distance < 1500)

/74

// if (distance < previousDistance)
// {

// roviol.ManualDrive(3, speed);
// rovio2.ManualDrive(3, speed);
// }

// else

// {

// rovio2.ManualDrive(4, speed);
// roviol.ManualDrive(4, speed);
// }

/1}

previousDistance = distance;

//battery monitoring method
public void batteryMonitoring()
{

while (true)

{

//create the two rovio objects -- IMPORTANCE OF CREATING THE NEW OBJECTS IN
TEH NEW THREAD

RovioController roviol = new RovioController("username", "password",
roviolURL);

RovioController rovio2 = new RovioController("username", "password",
rovio2URL);

//rovio 1 get report

115

string strRoviol = roviol.GetReport();
//rovio 2 get report
string strRovio2 = rovio2.GetReport();

int last;

//battery monitoring
//1

str_charg = strRovio2;
str_chargl = strRoviol;

//2

int firstCharacterBat = str_charg.IndexOf("battery");
str_bat = str_charg.Substring(firstCharacterBat + 8, 6);
last = str_bat.Index0f("|");

battery = Convert.ToInt32(str_bat.Substring(@, last));

firstCharacterBatl = str_chargl.IndexOf("battery");
str_batl = str_chargl.Substring(firstCharacterBatl + 8, 6);
last = str_batl.IndexOf("|");

batteryl = Convert.ToInt32(str_batl.Substring(@, last));

//3
firstCharacterCharg = str_charg.IndexOf("charging");
str_charg = str_charg.Substring(firstCharacterCharg + 9, 2);

firstCharacterChargl = str_chargl.IndexOf("charging");
str_chargl = str_chargl.Substring(firstCharacterChargl + 9, 2);

/14
if (str_charg == "80")
{
rollProgressBar2();
}
else
{
displayBar2(battery);
}
if (str_chargl == "80")
{
rollProgressBarl();
}
else
{
displayBaril(batteryl);
}
}
}
111717117
111171717
/11717117
[117777777777777171777717177171717
// //
//take images method for Rovio 1//
// //

116

IITTT17077777777717777717711177177

public void takeImagesi()
{

while (true)
{

//create stopwatch start in the beginning of the thread execution
Stopwatch sw = new Stopwatch();
sw.Start();

//url string command initialisation

string sourceURL = roviolURL + "//Jpeg/CamImg.jpg";
//pictureBox1.Load(sourceURL);

byte[] buffer = new byte[100000];

int read, total = 0;

// create HTTP request
HttpWebRequest req = (HttpWebRequest)WebRequest.Create(sourceURL);

// get response
WebResponse resp = req.GetResponse();

// get response stream
Stream stream = resp.GetResponseStream();

// read data from stream
while ((read = stream.Read(buffer, total, 1000)) != 0)

{
¥

// get bitmap
Bitmap bmp = (Bitmap)Bitmap.FromStream(new MemoryStream(buffer, 0, total));

total += read;

Image<Bgr, Byte> frame = new Image<Bgr, Byte>((Bitmap)bmp);
Image<Bgr, Byte> frameOutput = frame;
Image<Gray, Byte> frameOutputGray = frame.Convert<Gray, Byte>();

if (processingChoice == 1)

{

frameOutputGray
imageBox1.Image

EdgeDetection(frame);
displayExecutionTimeInGray(frameOutputGray,sw);

}
else if (processingChoice == 2)
{
frameOutput = PinkTracking(frame);
imageBox1.Image = displayExecutionTimeInColor(frameOutput, sw);

else if (processingChoice == 3)
{
frameOutput = Segmenting(frame);
imageBox1.Image = displayExecutionTimeInColor(frameOutput, sw);
}
else if (processingChoice == 6 || processingChoice == 8 ||
processingChoice==11)
{
frameOutput = PinkBallCommandingl(frame);
imageBox1.Image = displayExecutionTimeInColor(frameOutput, sw);

117

else if (processingChoice == 5)

{
//color range initialisation
MCvScalar hsv_min = new MCvScalar(e, 0, 0);
MCvScalar hsv_max = new MCvScalar(@, 0, 0);

if (checkBox1.Checked)

{
//range for blue color
hsv_min = new MCvScalar(110, 50, 110);
hsv_max = new MCvScalar(124, 180, 200);

else if (checkBox2.Checked)

{
//range for purple color
hsv_min = new MCvScalar(125, 50, 110);
hsv_max = new MCvScalar(150, 180, 200);

}
else if (checkBox3.Checked)

{
//range for yellow color
hsv_min = new MCvScalar(30, 101, 102);
hsv_max = new MCvScalar(53, 174, 239);

}
else if (checkBox4.Checked)

{
//range for ? color
hsv_min = new MCvScalar(hue_min, sat_min, val_min);
hsv_max = new MCvScalar(hue_max, sat_max, val_max);

}

else

//black color
hsv_min = new MCvScalar(@, 0, 9);
hsv_max = new MCvScalar(e, 0, 9);

}

frameOutputGray
imageBox1.Image

colorTracking(frame, hsv_min, hsv_max);
displayExecutionTimeInGray(frameOutputGray, sw);

}
else if (processingChoice == 9)
{
frameOutput = YellowBallCommandingl(frame);
imageBox1.Image = displayExecutionTimeInColor(frameOutput, sw);

else if (processingChoice == 7)
{
frameOutput = CircleAndColorDetection(frame);
imageBox1.Image = displayExecutionTimeInColor(frameOutput, sw);

else if (processingChoice == 12)
{
frameOutput = NewBallCommandingl(frame);
imageBox1.Image = displayExecutionTimeInColor(frameOutput, sw);

}
else //Normal

{

//display Image in normal mode
imageBox1.Image = displayExecutionTimeInColor(frameOutput, sw);

}
//standard for tab 2

118

if (enableTab2 == true)
{

}

//end stopwatch -calculate duration of each frame display
sw.Stop();

imageBox2.Image = displayExecutionTimeInColor(frame, sw);

111111177
117717117
117711117

IITTT10777777777717777117777171177

//

1/

//take images method for Rovio 2//

//

//

11171777 777777771171777771777777

public void takeImages2()

{

while (true)

{

//create stopwatch start in the beginning of the thread execution
Stopwatch sw = new Stopwatch();
sw.Start();

//url string command initialisation

string sourceURL = rovio2URL + "//Jpeg/CamImg.jpg";
//pictureBoxl.Load(sourceURL);

byte[] buffer = new byte[100000];

int read, total = 0;

// create HTTP request
HttpWebRequest req = (HttpWebRequest)WebRequest.Create(sourceURL);

// get response
WebResponse resp = req.GetResponse();

// get response stream
Stream stream = resp.GetResponseStream();

// read data from stream
while ((read = stream.Read(buffer, total, 1000)) != 9)

{

}
// get bitmap

total += read;

Bitmap bmp = (Bitmap)Bitmap.FromStream(new MemoryStream(buffer, 0, total));

Image<Bgr, Byte> frame = new Image<Bgr, Byte>((Bitmap)bmp);
Image<Bgr, Byte> frameOutput = frame;
Image<Gray, Byte> frameOutputGray = frame.Convert<Gray, Byte>();

if (processingChoice == 1)
{
frameOutputGray = EdgeDetection(frame);
captureImageBox.Image = displayExecutionTimeInGray(frameOutputGray, sw);

119

else if (processingChoice == 2)
{
frameOutput = PinkTracking(frame);
captureImageBox.Image = displayExecutionTimeInColor(frameOutput, sw);

else if (processingChoice == 3)
{
frameOutput = Segmenting(frame);
captureImageBox.Image = displayExecutionTimeInColor(frameOutput, sw);
}
else if (processingChoice == 4) //originally 4
{
frameOutput = PinkBallCommanding2(frame);
captureImageBox.Image = displayExecutionTimeInColor(frameOutput, sw);
}
else if (processingChoice == 5)
{
//color range initialisation
MCvScalar hsv_min = new MCvScalar(e, 0, 0);
MCvScalar hsv_max = new MCvScalar(@, 0, 9);

if (checkBox1.Checked)

{
//range for blue color
hsv_min = new MCvScalar(11le, 50, 110);
hsv_max = new MCvScalar(124, 180, 200);

else if (checkBox2.Checked)

{
//range for purple color
hsv_min = new MCvScalar(125, 50, 110);
hsv_max = new MCvScalar(150, 180, 200);

}
else if (checkBox3.Checked)

{
//range for yellow color
hsv_min = new MCvScalar(30, 101, 102);
hsv_max = new MCvScalar(53, 174, 239);
}
else if (checkBox4.Checked)
{
//range for ? color
hsv_min = new MCvScalar(hue_min, sat_min, val_min);
hsv_max = new MCvScalar(hue_max, sat_max, val_max);

}

else

//black color
hsv_min = new MCvScalar(e, 0, 9);
hsv_max = new MCvScalar(@, 0, 9);

}

frameOutputGray = colorTracking(frame, hsv_min, hsv_max);
captureImageBox.Image = displayExecutionTimeInGray(frameOutputGray, sw);

else if (processingChoice == 10)
{
frameOutput = YellowBallCommanding2(frame);
captureImageBox.Image = displayExecutionTimeInColor(frameOutput, sw);

}

else //Normal

{

//display Image in normal mode

120

captureImageBox.Image = displayExecutionTimeInColor(frameOutput, sw);

}

//tab 2 display
if (enableTab2 == true)

{
imageBox3.Image = displayExecutionTimeInColor(frame, sw);
}
//end stopwatch -calculate duration of each frame display
sw.Stop();
}
}
117171177
/11711117
1117111117

IIT11T7717 777777707 77777771777777

//

1/

//take images method for Rovio 3//

//

//

1111777 777777771171777771777777

public void takeImages3()

{

while (true)
{

//create stopwatch start in the beginning of the thread execution
Stopwatch sw = new Stopwatch();
sw.Start();

//url string command initialisation

string sourceURL = rovio3URL + "//Jpeg/CamImg.jpg";
//pictureBoxl.Load(sourceURL);

byte[] buffer = new byte[100000];

int read, total = 0;

// create HTTP request
HttpWebRequest req = (HttpWebRequest)WebRequest.Create(sourceURL);

// get response
WebResponse resp = req.GetResponse();

// get response stream
Stream stream = resp.GetResponseStream();

// read data from stream
while ((read = stream.Read(buffer, total, 1000)) != @)

{
}

// get bitmap
Bitmap bmp = (Bitmap)Bitmap.FromStream(new MemoryStream(buffer, 0, total));

total += read;

Image<Bgr, Byte> frame = new Image<Bgr, Byte>((Bitmap)bmp);
Image<Bgr, Byte> frameOutput = frame;

121

Image<Gray, Byte> frameOutputGray = frame.Convert<Gray, Byte>();

//display Image in normal mode

imageBox4.Image = displayExecutionTimeInColor(frameOutput, sw);

//end stopwatch -calculate duration of each frame display

sw.Stop();
}

}

111111717

1117111117

111111717
LIT11177777777777177717777717717177
// //
//take images method for Rovio 4//
// //

IIT1111777777777771777771711777777

public void takeImages4()
{

while (true)
{

//create stopwatch start in the beginning of the thread execution
Stopwatch sw = new Stopwatch();
sw.Start();

//url string command initialisation

string sourceURL = rovio4URL + "//Jpeg/CamImg.jpg";
//pictureBox1.Load(sourceURL);

byte[] buffer = new byte[100000];

int read, total = 0;

// create HTTP request
HttpWebRequest req = (HttpWebRequest)WebRequest.Create(sourceURL);

// get response
WebResponse resp = req.GetResponse();

// get response stream
Stream stream = resp.GetResponseStream();

// read data from stream
while ((read = stream.Read(buffer, total, 1000)) != @)
{

}

// get bitmap
Bitmap bmp = (Bitmap)Bitmap.FromStream(new MemoryStream(buffer, 0,

total += read;

Image<Bgr, Byte> frame = new Image<Bgr, Byte>((Bitmap)bmp);
Image<Bgr, Byte> frameQutput = frame;
Image<Gray, Byte> frameOutputGray = frame.Convert<Gray, Byte>();

total));

122

//display Image in normal mode

imageBox5.Image = displayExecutionTimeInColor(frameOutput, sw);

//end stopwatch -calculate duration of each frame display
sw.Stop();

111171117
111111117
111111117
IITTT10777777777717777117777177177

1/

//take images method for Rovio 5//

//

11171777 777777771171777771777777

public void takeImages5()

while (true)
{

//create stopwatch start in the beginning of the thread execution
Stopwatch sw = new Stopwatch();
sw.Start();

//url string command initialisation

string sourceURL = rovio5URL + "//Jpeg/CamImg.jpg";
//pictureBox1.Load(sourceURL);

byte[] buffer = new byte[100000];

int read, total = 0;

// create HTTP request
HttpWebRequest req = (HttpWebRequest)WebRequest.Create(sourceURL);

// get response
WebResponse resp = req.GetResponse();

// get response stream
Stream stream = resp.GetResponseStream();

// read data from stream
while ((read = stream.Read(buffer, total, 1000)) != @)
{

}

// get bitmap
Bitmap bmp = (Bitmap)Bitmap.FromStream(new MemoryStream(buffer, 0, total));

total += read;

Image<Bgr, Byte> frame = new Image<Bgr, Byte>((Bitmap)bmp);
Image<Bgr, Byte> frameQutput = frame;
Image<Gray, Byte> frameOutputGray = frame.Convert<Gray, Byte>();

//display Image in normal mode

123

imageBox6.Image = displayExecutionTimeInColor(frameOutput, sw);

//end stopwatch -calculate duration of each frame display

sw.Stop();

}
}
/* Go home Button and command - Rovio 1 */
private void button48 Click(object sender, EventArgs e)
{

roviol.GoHomeAndDock();
}

private void button22_Click(object sender, EventArgs e)

{
rovio2.GoHomeAndDock();
}
/* form closing */
private void Forml_FormClosing(object sender, FormClosingEventArgs e)
{
if (wanderThread2.IsAlive == true)
{
wanderThread2.Abort();
}
if (wanderThreadl.IsAlive == true)
{
wanderThread2.Abort();
}
}

IITTTLTTIL 7707777770777 777777777 77777777177771771717177177

// //
// Image Processing Routines using OpenCV //
// //

IITTTTTTIT TP 7 7777777177777 7777777 71777771777777177

/*************************************/

/* Edge Detection */
sk 5k 5k >k 5k 5k sk 5k 3k 5k 5k 5k %k 5k 5k %k >k 5k %k >k 5k 5k 5k 5k %k >k 5k %k >k 5k %k >k 5k k >k ok k
/ /

public Image<Gray,Byte> EdgeDetection(Image<Bgr,Byte> image)
{
Image<Gray, Byte> grayFrame = image.Convert<Gray, Byte>();
Image<Gray, Byte> smallGrayFrame = grayFrame.PyrDown();
Image<Gray, Byte> smoothedGrayFrame = smallGrayFrame.PyrUp();
//Image<Gray, Byte> cannyFrame = smoothedGrayFrame.Canny(new Gray(100), new
Gray(60)); //100,60
Image<Gray, Byte> cannyFrame = smoothedGrayFrame.Canny(new Gray(edparaml), new
Gray(edparam2));
return cannyFrame;

}

124

/*************************************/

/* Tracking Pink Color */
[KR sk sk stk sk sk ok sk ok sk stk stk ok sk ok sk ok sk ok sk sk ok sk ok ok ok /

public Image<Bgr, Byte> PinkTracking(Image<Bgr, Byte> image)
{

MCvMoments moments = new MCvMoments();

//MCvScalar hsv_min=new MCvScalar(0,50,170);
//MCvScalar hsv_max=new MCvScalar(10,180,256);
//MCvScalar hsv_min2=new MCvScalar(170,50,1790);
//MCvScalar hsv_max2=new MCvScalar(256,1890,256);

MCvScalar hsv_min = new MCvScalar(172, 147, 185);
MCvScalar hsv_max = new MCvScalar(176, 211, 256);

Image<Gray, Byte> thresholded = image.Convert<Gray, Byte>();
Image<Gray, Byte> thresholded2 = image.Convert<Gray, Byte>();
Image<Hsv, Byte> hsv_image = image.Convert<Hsv, Byte>();

CvInvoke.cvCvtColor(image, hsv_image,
Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);

CvInvoke.cvInRangeS(hsv_image, hsv_min, hsv_max, thresholded);

//CvInvoke.cvInRangeS(hsv_image, hsv_min2, hsv_max2, thresholded2);

//CvInvoke.cvOr(thresholded, thresholded2, thresholded,IntPtr.Zero);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE
9, 9, 0, 0);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE
9, 9, 0, 9);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE
9, 9, 0, 0);

CvInvoke.cvThreshold(thresholded, thresholded, 12, 256,
Emgu.CV.CvEnum. THRESH.CV_THRESH_BINARY);

int iterations = 5;

CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvMoments(thresholded, ref moments, 1);
double momentl® = CvInvoke.cvGetSpatialMoment(ref moments, 1, 0);
double moment@l = CvInvoke.cvGetSpatialMoment(ref moments, 0, 1);

double areaPink = CvInvoke.cvGetCentralMoment(ref moments, 0, 0);

int posX
int posY

0;
e;

//exception handling

try
{
posX = Convert.ToInt32(momentl® / areaPink);
posY = Convert.ToInt32(moment®l / areaPink);
}
catch
{
//do nothing
}

.CV_BLUR,
.CV_BLUR,

.CV_BLUR,

125

Point center=new Point(posX,posY);

MCvScalar colorCenter=new MCvScalar(204,102,255);
MCvFont font = new MCvFont();
MCvScalar colorFont=new MCvScalar(0,0,255);

if (posX > @ && posY > 9)

{

CvInvoke.cvCircle(image, center, 10, colorCenter, -1,

Emgu.CV.CvEnum. LINE

_TYPE.EIGHT_CONNECTED, 0);

CvInvoke.cvInitFont(ref font,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_COMPLEX_SMALL, 1, 1, o, 1,

Emgu.CV.CvEnum. LINE

_TYPE.EIGHT_CONNECTED);

string textCenter = "(" + Convert.ToString(center.X) + "," +
Convert.ToString(center.Y) + ")";
CvInvoke.cvPutText(image, textCenter, center, ref font, colorFont);

}

return image;

[R okt ok sk ok sk ok ko stk ok sk ok sk sk sk sk kst skok sk ok ok

/* Segmenting Image */
[Rk sk kst stk sk sk stk sk ok sk skl stk ok stk ok skokok /

public Image<Bgr, Byte> Segmenting(Image<Bgr, Byte> image)

{

MCvMoments moments = new MCvMoments();

MCvScalar hsv_min

new MCvScalar(e, 50, 1790);

MCvScalar hsv_max = new MCvScalar(10, 180, 256);

MCvScalar hsv_min2

new MCvScalar(170, 50, 170);

MCvScalar hsv_max2 = new MCvScalar(256, 180, 256);

Image<Gray, Byte> thresholded = image.Convert<Gray, Byte>();
Image<Gray, Byte> thresholded2 = image.Convert<Gray, Byte>();
Image<Hsv, Byte> hsv_image = image.Convert<Hsv, Byte>();

CvInvoke.cvCvtColor(image, hsv_image,
Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);

CvInvoke.cvInRangeS(hsv_image, hsv_min, hsv_max, thresholded);

CvInvoke.cvInRangeS(hsv_image, hsv_min2, hsv_max2, thresholded2);

CvInvoke.cvOr(thresholded, thresholded2, thresholded, IntPtr.Zero);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 0);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 0);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 9);

CvInvoke.cvThreshold(thresholded, thresholded, 12, 256,

Emgu.CV.CvEnum. THRESH.CV_THRESH_BINARY);
int iterations = 5;

CvInvoke.
CvInvoke.

CvInvoke

CvInvoke.

cvErode(thresholded, thresholded, IntPtr.Zero, iterations);
cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);
.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);
cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

126

CvInvoke.cvMoments(thresholded, ref moments, 1);

double momentl® = CvInvoke.cvGetSpatialMoment(ref moments, 1, 0);
double moment@l = CvInvoke.cvGetSpatialMoment(ref moments, 0, 1);
double areaPink = CvInvoke.cvGetCentralMoment(ref moments, 0, 90);

int posX
int posY

;
0;

//exception handling

try
{
posX = Convert.ToInt32(momentl® / areaPink);
posY = Convert.ToInt32(moment@l / areaPink);
}
catch
//do nothing
}

Point center = new Point(posX, posY);

MCvScalar colorCenter = new MCvScalar(204, 102, 255);
MCvFont font = new MCvFont();

MCvScalar colorFont = new MCvScalar(e, ©, 255);

if (posX > © && posY > 9)
{

CvInvoke.cvCircle(image, center, 10, colorCenter, -1,
Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, 9);

CvInvoke.cvInitFont(ref font,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_COMPLEX_SMALL, 1, 1, o, 1,
Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED);

string textCenter = "(" + Convert.ToString(center.X) + "," +

Convert.ToString(center.Y) + 5
CvInvoke.cvPutText(image, textCenter, center, ref font, colorFont);
}

//1st segment

MCvScalar colorRect = new MCvScalar(@, 255, 255);

Point pl = new Point(image.Width / 5, image.Height / 5);
Point p2 = new Point(image.Width / 5, image.Height / 5);

for (int i = @; i <= segments; i++)
{
for (int j = @; j <= segments; j++)
{
//create points
pl = new Point(i * image.Width / segments, j * image.Height / segments);
p2 = new Point((i + 1) * image.Width / segments, (j + 1) * image.Height /
segments);

//display points

MCvFont fontl = new MCvFont();

CvInvoke.cvInitFont(ref fontil,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_COMPLEX,@.5f,0.5f, 0,1,
Emgu.CV.CvEnum.LINE TYPE.EIGHT_CONNECTED);

string textRectPointsP1
Convert.ToString(pl.Y) + ")";

string textRectPointsP2
Convert.ToString(p2.Y) + ")";

CvInvoke.cvPutText(image, textRectPointsPl, pl, ref fontl, colorRect);

CvInvoke.cvPutText(image, textRectPointsP2, p2, ref fontl, colorRect);

"(" + Convert.ToString(pl.X) + "," +

"(" + Convert.ToString(p2.X) + "," +

127

//display rectangles
CvInvoke.cvRectangle(image, pl, p2, colorRect, 1,
Emgu.CV.CvEnum.LINE TYPE.EIGHT_CONNECTED, 9);

return image;
[k sk sk sk stk skl ok skl kol ok skl kol sk skl kol ko ok skok ko skok
/* Pink Ball Commanding Rovio 1 */

/**/

public Image<Bgr, Byte> PinkBallCommandingl(Image<Bgr, Byte> image)
{

MCvMoments moments = new MCvMoments();

//MCvScalar hsv_min = new MCvScalar(@, 50, 1790);
//MCvScalar hsv_max = new MCvScalar(10, 180, 256);
//MCvScalar hsv_min2 new MCvScalar(170, 50, 170);
//MCvScalar hsv_max2 = new MCvScalar(256, 180, 256);

MCvScalar hsv_min = new MCvScalar(172, 147, 185);
MCvScalar hsv_max = new MCvScalar(176, 211, 256);

Image<Gray, Byte> thresholded = image.Convert<Gray, Byte>();
Image<Gray, Byte> thresholded2 = image.Convert<Gray, Byte>();
Image<Hsv, Byte> hsv_image = image.Convert<Hsv, Byte>();

CvInvoke.cvCvtColor(image, hsv_image,
Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);

CvInvoke.cvInRangeS(hsv_image, hsv_min, hsv_max, thresholded);

//CvInvoke.cvInRangeS(hsv_image, hsv_min2, hsv_max2, thresholded2);

//CvInvoke.cvOr(thresholded, thresholded2, thresholded, IntPtr.Zero);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH TYPE.CV_BLUR,
9, 9, 0, 0);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 9);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 0);

CvInvoke.cvThreshold(thresholded, thresholded, 12, 256,
Emgu.CV.CvEnum. THRESH.CV_THRESH_BINARY);

int iterations = 5;

CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvMoments(thresholded, ref moments, 1);
double momentl@ = CvInvoke.cvGetSpatialMoment(ref moments, 1, 0);

double moment@l = CvInvoke.cvGetSpatialMoment(ref moments, 0, 1);
double areaPink = CvInvoke.cvGetCentralMoment(ref moments, 0, 90);

int posX
int posY

0;
9;

//exception handling
try

{
posX = Convert.ToInt32(momentl® / areaPink);

128

posY = Convert.ToInt32(moment@l / areaPink);

¥
catch
{
//do nothing
}

Point center = new Point(posX, posY);

MCvScalar colorCenter = new MCvScalar(@, ©, 255);
MCvFont font = new MCvFont();

MCvScalar colorFont = new MCvScalar(255, 0, 0);

if (posX > © && posY > 9)

// draw circle around the center of the detected pink blob

CvInvoke.cvCircle(image, center, 10, colorCenter, -1,
Emgu.CV.CvEnum.LINE_TYPE.EIGHT _CONNECTED, 0);

CvInvoke.cvInitFont(ref font,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_COMPLEX_SMALL, 1, 1, o, 1,
Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED);

string textCenter = "(" + Convert.ToString(center.X) + "," +
Convert.ToString(center.Y) + ")";

CvInvoke.cvPutText(image, textCenter, center, ref font, colorFont);

}

//Action message point and message color

Point pointActionMessage = new Point(@, 30);
MCvScalar colorMessage = new MCvScalar(@, 255, 255);
string textStop = "Action:Stop";

string textForwardRight = "Action:Forward Right";
string textForwardLeft = "Action:Forward Left";
string textForward = "Action:Forward";

string textRotateLeft = "Action:Rotate Left";

//searching and centralizing algorithm 6
if (center.Y > 440) //440 originally

{
if (goHomeFlag == 1)
{
roviol.GoHome();
processingChoice = 0;
goHomeFlag = 0;
}
if (processingChoice == 11)
{
processingChoice = 9;//yellow ball
missionlFlag = 1;
}
if (processingChoice == 8) //play with the ball
{
//give permission to rovio 2
processingChoice = 4;
playFlag = 1;
}
//stop Rovio 2
roviol.ManualDrive(@, speed); //stop
CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

129

else if (center.Y > 96)
if (center.X > 512)

{
roviol.ManualDrive(8, speed); //forward right
CvInvoke.cvPutText(image, textForwardRight, pointActionMessage, ref font,
colorMessage);
}
else if (center.X > 348)
{
roviol.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward , pointActionMessage, ref font,
colorMessage);

else if (center.X > 256)
{

roviol.ManualDrive(1, speed); //forward

CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);

else if (center.X > 128)

{
roviol.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);
}
else
{
roviol.ManualDrive(7, speed); //forward left
CvInvoke.cvPutText(image, textForwardLeft, pointActionMessage, ref font,
colorMessage);
}
else
{

roviol.ManualDrive(17, speed); //rotate left

CvInvoke.cvPutText(image, textRotateLeft, pointActionMessage, ref font,
colorMessage);

roviol.ManualDrive(@, speed); //stop

CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

}

return image;

Rk ok sk sk sk ok stk stk ok ko sk sk sk sk koK sk sk sk sk Rk ok ok

/* Pink Ball Commanding Rovio 2 */
/**/

public Image<Bgr, Byte> PinkBallCommanding2(Image<Bgr, Byte> image)
{

MCvMoments moments = new MCvMoments();

//MCvScalar hsv_min = new MCvScalar(@, 50, 1790);
//MCvScalar hsv_max = new MCvScalar(10, 180, 256);

130

//MCvScalar hsv_min2 new MCvScalar(170, 50, 1790);
//MCvScalar hsv_max2 = new MCvScalar(256, 180, 256);

MCvScalar hsv_min
MCvScalar hsv_max

new MCvScalar(172, 147, 185);
new MCvScalar(176, 211, 256);

Image<Gray, Byte> thresholded = image.Convert<Gray, Byte>();
Image<Gray, Byte> thresholded2 = image.Convert<Gray, Byte>();
Image<Hsv, Byte> hsv_image = image.Convert<Hsv, Byte>();

CvInvoke.cvCvtColor(image, hsv_image,
Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);

CvInvoke.cvInRangeS(hsv_image, hsv_min, hsv_max, thresholded);

//CvInvoke.cvInRangeS(hsv_image, hsv_min2, hsv_max2, thresholded2);

//CvInvoke.cvOr(thresholded, thresholded2, thresholded, IntPtr.Zero);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,

9, 9, 0, 0);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH TYPE.CV_BLUR,

9, 9, 0, 9);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH TYPE.CV_BLUR,

9, 9, 0, 0);
CvInvoke.cvThreshold(thresholded, thresholded, 12, 256,
Emgu.CV.CvEnum. THRESH.CV_THRESH_BINARY);
int iterations = 5;
CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvMoments(thresholded, ref moments, 1);
double momentl1® = CvInvoke.cvGetSpatialMoment(ref moments, 1, 9);

double moment@l = CvInvoke.cvGetSpatialMoment(ref moments, 0, 1);
double areaPink CvInvoke.cvGetCentralMoment(ref moments, 0, 0);

int posX
int posY

9;
e;

//exception handling

try
{
posX = Convert.ToInt32(momentl® / areaPink);
posY = Convert.ToInt32(moment@l / areaPink);
}
catch
{
//do nothing
}

Point center = new Point(posX, posY);

MCvScalar colorCenter = new MCvScalar(@, ©, 255);
MCvFont font = new MCvFont();

MCvScalar colorFont = new MCvScalar(255, 0, 0);

if (posX > © && posY > 9)
{
// draw circle around the center of the detected pink blob
CvInvoke.cvCircle(image, center, 10, colorCenter, -1,
Emgu.CV.CvEnum.LINE TYPE.EIGHT_CONNECTED, 9);
CvInvoke.cvInitFont(ref font,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_COMPLEX_SMALL, 1, 1, o, 1,
Emgu.CV.CVvEnum.LINE TYPE.EIGHT CONNECTED);

131

string textCenter = "(" + Convert.ToString(center.X) + "," +

Convert.ToString(center.Y) + ;
CvInvoke.cvPutText(image, textCenter, center, ref font, colorFont);

}

//Action message point and message color

Point pointActionMessage=new Point(©,30);

MCvScalar colorMessage = new MCvScalar(®@, 255, 255);
string textStop = "Action:Stop";

string textForwardRight = "Action:Forward Right";
string textForwardLeft = "Action:Forward Left";
string textForward = "Action:Forward";

string textRotatelLeft = "Action:Rotate Left";

//searching and centralizing algorithm 6
if (center.Y > 440) //originally 440

{

if (playFlag == 1)

processingChoice = 8;

}

//stop Rovio 2

rovio2.ManualDrive(©, speed); //stop

CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

¥
else if (center.Y > 96)

if (center.X > 512)

{
rovio2.ManualDrive(8, speed); //forward right
CvInvoke.cvPutText(image, textForwardRight, pointActionMessage, ref font,
colorMessage);
}
else if (center.X > 348)
{
rovio2.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);

else if (center.X > 256)
{

rovio2.ManualDrive(1, speed); //forward

CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);

else if (center.X > 128)

{
rovio2.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);
}
else
{

rovio2.ManualDrive(7, speed); //forward left

132

CvInvoke.cvPutText(image, textForwardLeft, pointActionMessage, ref font,
colorMessage);

}

else

{
rovio2.ManualDrive(17, speed); //rotate left

CvInvoke.cvPutText(image, textRotateLeft, pointActionMessage, ref font,
colorMessage);

rovio2.ManualDrive(@, speed); //stop

CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

}

return image;

/**/

/* Yellow Ball Commanding Rovio 1 */
[Rk sk skt ok stk sk ok stk ok skl kst sk stk sk sk skskok ok skskok sk ok ok /

public Image<Bgr, Byte> YellowBallCommandingl(Image<Bgr, Byte> image)
{

MCvMoments moments = new MCvMoments();

MCvScalar hsv_min = new MCvScalar(3e, 101, 102);
MCvScalar hsv_max = new MCvScalar(53, 174, 239);

Image<Gray, Byte> thresholded = image.Convert<Gray, Byte>();
Image<Hsv, Byte> hsv_image = image.Convert<Hsv, Byte>();

CvInvoke.cvCvtColor(image, hsv_image,
Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);
CvInvoke.cvInRangeS(hsv_image, hsv_min, hsv_max, thresholded);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH TYPE.CV_BLUR,
9, 9, 0, 9);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 9);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 9);

CvInvoke.cvThreshold(thresholded, thresholded, 12, 256,
Emgu.CV.CvEnum. THRESH.CV_THRESH_BINARY);

int iterations = 5;

CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvMoments(thresholded, ref moments, 1);
double momentl@ = CvInvoke.cvGetSpatialMoment(ref moments, 1, 0);

double moment@l = CvInvoke.cvGetSpatialMoment(ref moments, 0, 1);
double areaPink = CvInvoke.cvGetCentralMoment(ref moments, 0, 90);

int posX = 0;

133

int posY = 0;

//exception handling

try
{
posX = Convert.ToInt32(momentl® / areaPink);
posY = Convert.ToInt32(moment@l / areaPink);
}
catch
{
//do nothing
}

Point center = new Point(posX, posY);

MCvScalar colorCenter = new MCvScalar(@, ©, 255);
MCvFont font = new MCvFont();

MCvScalar colorFont = new MCvScalar(255, 0, 0);

if (posX > © && posY > 9)
{

// draw circle around the center of the detected pink blob

CvInvoke.cvCircle(image, center, 10, colorCenter, -1,
Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, 9);

CvInvoke.cvInitFont(ref font,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_COMPLEX_SMALL, 1, 1, o, 1,
Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED);

string textCenter = "(" + Convert.ToString(center.X) + "," +
Convert.ToString(center.Y) + ")";

CvInvoke.cvPutText(image, textCenter, center, ref font, colorFont);

}

//Action message point and message color

Point pointActionMessage = new Point(@, 30);
MCvScalar colorMessage = new MCvScalar(@, 255, 255);
string textStop = "Action:Stop";

string textForwardRight = "Action:Forward Right";
string textForwardLeft = "Action:Forward Left";
string textForward = "Action:Forward";

string textRotatelLeft = "Action:Rotate Left";

//searching and centralizing algorithm 6
if (center.Y > 400) //440 originally

{
if (missionlFlag == 1)
{
processingChoice = 11; //again pink
missionlFlag = 0;
goHomeFlag = 1;
}
if (processingChoice == 8) //play with the ball
{
//give permission to rovio 2
processingChoice = 4;
playFlag = 1;
}
//stop Rovio 2
roviol.ManualDrive(©, speed); //stop
CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

134

}
else if (center.Y > 96)

if (center.X > 512)

{
roviol.ManualDrive(8, speed); //forward right
CvInvoke.cvPutText(image, textForwardRight, pointActionMessage, ref font,
colorMessage);
}
else if (center.X > 348)
{
roviol.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);
}
else if (center.X > 256)
{
roviol.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);
}
else if (center.X > 128)
{
roviol.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);
}
else
{
roviol.ManualDrive(7, speed); //forward left
CvInvoke.cvPutText(image, textForwardLeft, pointActionMessage, ref font,
colorMessage);
}
else
{

roviol.ManualDrive(17, speed); //rotate left

CvInvoke.cvPutText(image, textRotateLeft, pointActionMessage, ref font,
colorMessage);

roviol.ManualDrive(®, speed); //stop

CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

}

return image;

/**/
/* Yellow Ball Commanding Rovio 2 */

/**/

public Image<Bgr, Byte> YellowBallCommanding2(Image<Bgr, Byte> image)
{

MCvMoments moments = new MCvMoments();

MCvScalar hsv_min = new MCvScalar(30, 101, 102);

135

MCvScalar hsv_max = new MCvScalar(53, 174, 239);

Image<Gray, Byte> thresholded = image.Convert<Gray, Byte>();
Image<Hsv, Byte> hsv_image = image.Convert<Hsv, Byte>();
CvInvoke.cvCvtColor(image, hsv_image,

Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);
CvInvoke.cvInRangeS(hsv_image, hsv_min, hsv_max, thresholded);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH TYPE.CV_BLUR,

9, 9, 0, 0);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,

9, 9, 0, 9);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,

9, 9, 0, 9);
CvInvoke.cvThreshold(thresholded, thresholded, 12, 256,
Emgu.CV.CvEnum. THRESH.CV_THRESH_BINARY);
int iterations = 5;
CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvMoments(thresholded, ref moments, 1);
double momentl® = CvInvoke.cvGetSpatialMoment(ref moments, 1, 0);
double moment@l = CvInvoke.cvGetSpatialMoment(ref moments, 0, 1);

double areaPink = CvInvoke.cvGetCentralMoment(ref moments, 0, 9);

int posX
int posY

0;
9;

//exception handling

try
{
posX = Convert.ToInt32(momentl® / areaPink);
posY = Convert.ToInt32(moment@l / areaPink);
}
catch
{
//do nothing
}

Point center = new Point(posX, posY);

MCvScalar colorCenter = new MCvScalar(®@, @, 255);
MCvFont font = new MCvFont();

MCvScalar colorFont = new MCvScalar(255, 0, 0);

if (posX > © && posY > 9)

// draw circle around the center of the detected pink blob
CvInvoke.cvCircle(image, center, 10, colorCenter, -1,
Emgu.CV.CvEnum.LINE TYPE.EIGHT_CONNECTED, 9);
CvInvoke.cvInitFont(ref font,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY COMPLEX_SMALL, 1, 1, o, 1,
Emgu.CV.CvEnum.LINE TYPE.EIGHT_CONNECTED);
string textCenter = "(" + Convert.ToString(center.X) + "," +
Convert.ToString(center.Y) + ")";
CvInvoke.cvPutText(image, textCenter, center, ref font, colorFont);

}

136

//Action message point and message color

Point pointActionMessage = new Point(@, 30);
MCvScalar colorMessage = new MCvScalar(®@, 255, 255);
string textStop = "Action:Stop";

string textForwardRight = "Action:Forward Right";
string textForwardLeft = "Action:Forward Left";
string textForward = "Action:Forward";

string textRotateLeft = "Action:Rotate Left";

//searching and centralizing algorithm 6
if (center.Y > 400) //440 originally

{
if (processingChoice == 8) //play with the ball
{
//give permission to rovio 2
processingChoice = 4;
playFlag = 1;
}
//stop Rovio 2
rovio2.ManualDrive(@, speed); //stop
CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

else if (center.Y > 96)
if (center.X > 512)

{
rovio2.ManualDrive(8, speed); //forward right
CvInvoke.cvPutText(image, textForwardRight, pointActionMessage, ref font,
colorMessage);
}
else if (center.X > 348)
{
rovio2.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);
else if (center.X > 256)
{
rovio2.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);
else if (center.X > 128)
{
rovio2.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
colorMessage);
}
else
{

rovio2.ManualDrive(7, speed); //forward left
CvInvoke.cvPutText(image, textForwardLeft, pointActionMessage, ref font,

137

colorMessage);

}

else

{

rovio2.ManualDrive(17, speed); //rotate left

CvInvoke.cvPutText(image, textRotatelLeft, pointActionMessage, ref font,
colorMessage);

rovio2.ManualDrive(@, speed); //stop

CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

}

return image;

/**/

/* New Ball Commanding Rovio 1 */
5k sk 5k 5k 3k 5k 5K 5k 5k 5k 3k 5k 5k 3k %k 5k 3k 5k 5k 3k %k 5k 3k 5k 5k 3k 5k >k 5k 5k 5k 3k 5k >k 5k %k >k 5k 5k >k >k %k k >k Kk
/ /

public Image<Bgr, Byte> NewBallCommandingl(Image<Bgr, Byte> image)

{

MCvMoments moments = new MCvMoments();

MCvScalar hsv_min = new MCvScalar(hue_min, sat_min, val_min);
MCvScalar hsv_max = new MCvScalar(hue_max, sat_max, val_max);

Image<Gray, Byte> thresholded = image.Convert<Gray, Byte>();
Image<Hsv, Byte> hsv_image = image.Convert<Hsv, Byte>();

CvInvoke.cvCvtColor(image, hsv_image,
Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);
CvInvoke.cvInRangeS(hsv_image, hsv_min, hsv_max, thresholded);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH TYPE.CV_BLUR,
9, 9, 0, 9);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 9);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,
9, 9, 0, 9);

CvInvoke.cvThreshold(thresholded, thresholded, 12, 256,
Emgu.CV.CvEnum. THRESH.CV_THRESH_BINARY);

int iterations = 5;

CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);

CvInvoke.cvMoments(thresholded, ref moments, 1);
double momentl@ = CvInvoke.cvGetSpatialMoment(ref moments, 1, 0);

double moment@l = CvInvoke.cvGetSpatialMoment(ref moments, 0, 1);
double areaPink = CvInvoke.cvGetCentralMoment(ref moments, 0, 90);

int posX = 0;

138

int posY = 0;

//exception handling

try
{
posX = Convert.ToInt32(momentl® / areaPink);
posY = Convert.ToInt32(moment@l / areaPink);
}
catch
{
//do nothing
}

Point center = new Point(posX, posY);

MCvScalar colorCenter = new MCvScalar(@, ©, 255);
MCvFont font = new MCvFont();

MCvScalar colorFont = new MCvScalar(255, 9, 0);

if (posX > © && posY > 9)
{

// draw circle around the center of the detected pink blob

CvInvoke.cvCircle(image, center, 10, colorCenter, -1,
Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, 9);

CvInvoke.cvInitFont(ref font,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_COMPLEX_SMALL, 1, 1, o, 1,
Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED);

string textCenter = "(" + Convert.ToString(center.X) + "," +
Convert.ToString(center.Y) + ")";

CvInvoke.cvPutText(image, textCenter, center, ref font, colorFont);

}

//Action message point and message color

Point pointActionMessage = new Point(@, 30);
MCvScalar colorMessage = new MCvScalar(@, 255, 255);
string textStop = "Action:Stop";

string textForwardRight = "Action:Forward Right";
string textForwardLeft = "Action:Forward Left";
string textForward = "Action:Forward";

string textRotatelLeft = "Action:Rotate Left";

//searching and centralizing algorithm 6
if (center.Y > 400) //440 originally

{
if (missionlFlag == 1)
{
processingChoice = 11; //again pink
missionlFlag = 0;
goHomeFlag = 1;
}
if (processingChoice == 8) //play with the ball
{
//give permission to rovio 2
processingChoice = 4;
playFlag = 1;
}
//stop Rovio 2
roviol.ManualDrive(©, speed); //stop
CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,
colorMessage);

139

}
else if (center.Y > 96)

if (center.X > 512)

colorMessage);

colorMessage);

colorMessage);

colorMessage);

colorMessage);

{
roviol.ManualDrive(8, speed); //forward right
CvInvoke.cvPutText(image, textForwardRight, pointActionMessage, ref font,
}
else if (center.X > 348)
{
roviol.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
}
else if (center.X > 256)
{
roviol.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
}
else if (center.X > 128)
{
roviol.ManualDrive(1, speed); //forward
CvInvoke.cvPutText(image, textForward, pointActionMessage, ref font,
}
else
{
roviol.ManualDrive(7, speed); //forward left
CvInvoke.cvPutText(image, textForwardLeft, pointActionMessage, ref font,
}
else
{

roviol.ManualDrive(17, speed); //rotate left
CvInvoke.cvPutText(image, textRotateLeft, pointActionMessage, ref font,

colorMessage);

roviol.ManualDrive(®, speed); //stop
CvInvoke.cvPutText(image, textStop, pointActionMessage, ref font,

colorMessage);

}

return image;

/*************************************/

/* Color Tracking */
/*************************************/

public Image<Gray, Byte> colorTracking(Image<Bgr, Byte> image,MCvScalar
hsv_min,MCvScalar hsv_max)

Image<Gray, Byte> thresholded = image.Convert<Gray, Byte>();

140

Image<Hsv, Byte> hsv_image = image.Convert<Hsv, Byte>();

CvInvoke.cvCvtColor(image, hsv_image,

Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);

CvInvoke.cvInRangeS(hsv_image, hsv_min, hsv_max, thresholded);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,

9, 9, 0, 0);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH TYPE.CV_BLUR,

9, 9, 0, 0);

CvInvoke.cvSmooth(thresholded, thresholded, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_BLUR,

9, 9, 0, 0);

CvInvoke.cvThreshold(thresholded, thresholded, 12, 256,

Emgu.CV.CVEnum. THRESH.CV_THRESH_BINARY);

int iterations = 5;
CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvDilate(thresholded, thresholded, IntPtr.Zero, iterations);
CvInvoke.cvErode(thresholded, thresholded, IntPtr.Zero, iterations);
return thresholded;

[Rkt ok ok sk sk stk ok sk ok sk ok sk sk sk sk ok skok sk sk sk sk sk koK sk sk ok sk ook /

/* Circle and color detection */
/***/

public Image<Bgr, Byte> CircleAndColorDetection(Image<Bgr, Byte> image)

{

circumfere

MCvScalar centreColor = new MCvScalar(@, @, @©); //black centre
MCvScalar circumColorI = new MCvScalar(255, 255, 255); //purple internal

MCvScalar circumColorE = new MCvScalar(255, 0, 0); // white external circumf

IntPtr cstorage = CvInvoke.cvCreateMemStorage(90);

Image<Gray, Byte> gray = image.Convert<Gray, Byte>();
Image<Gray, Byte> edge = image.Convert<Gray, Byte>();
CvInvoke.cvThreshold(gray, gray, thresholdCircle, 256,

Emgu.CV.CvEnum. THRESH.CV_THRESH_BINARY);

CvInvoke.cvSmooth(gray, gray, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_GAUSSIAN,paraml,

param2, (double)param3, (double)params);

CvInvoke.cvCanny(gray, edge, (double)thresholdil,

(double)thresholdl,apertureSize);

IntPtr circles = CvInvoke.cvHoughCircles(gray, cstorage,

Emgu.CV.CvEnum.HOUGH_TYPE.CV_HOUGH_GRADIENT, (double)accResolution, (double)minDist, (double)ca
nnyThreshold, (double)accThreshold,minRadius,maxRadius); //2, 100, 5, 50, 0, 100

for (int i = 0; i < N; i++) //filter N circles

{
unsafe
{
try
{

float* p = (float*)CvInvoke.cvGetSeqElem(circles, i);
centre = new Point((int)p[@], (int)p[1]);

//CvInvoke.cvCircle(image, centre, 1, centreColor, 1,

Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, ©);

CvInvoke.cvCircle(image, centre, (int)p[2], circumColorI, 3,

Emgu.CV.CvEnum.LINE TYPE.EIGHT_CONNECTED, 9);

CvInvoke.cvCircle(image, centre, (int)p[2] + 3, circumColorE, 3,

141

Emgu.CV.CvEnum.LINE TYPE.EIGHT_CONNECTED, 9);

string s = "Circle "+(i+1)+", Centre (" +
Convert.ToString(Convert.ToInt32(p[@])) + "," + Convert.ToString(Convert.ToInt32(p[1l])) +
"), Radius: " + Convert.ToString(Convert.ToInt32(p[2]));

displayCirclePosition(s);

}
catch
{
//do nothing
}

}

//button clicked
if (button2eClicked == true) //take sample

{

Bgr bgr = image[centre]; //(0,0)
centre.X += 10;

Bgr bgrl = image[centre]; //(10,0)
centre.Y += 10;

Bgr bgr2 = image[centre]; //(10,10)
centre.X -= 10;

Bgr bgr3 = image[centre]; //(0,10)
centre.X -= 10;

Bgr bgr4 = image[centre]; //(-10,10)
centre.Y -= 10;

Bgr bgr5 = image[centre]; //(-10,0)
centre.Y -= 10;

Bgr bgr6 = image[centre]; //(-10,-10)
centre.X += 10;

Bgr bgr7 = image[centre]; //(0,-10)
centre.X += 10;

Bgr bgr8 = image[centre]; //(10,-10)

Bgr bgrAve = averageBGR(bgr, bgril, bgr2, bgr3, bgr4, bgr5, bgr6, bgr7,
bgrs);

Rgb rgb = new Rgb();

rgb.Red = bgrAve.Red;

rgb.Green = bgrAve.Green;

rgb.Blue = bgrAve.Blue;

string bgrString = "BGR Average: Centre : R[" + (int)rgb.Red + "] G[" +
(int)rgb.Green + "] B[" + (int)rgb.Blue + "]";

displayColor(bgrString);

hsv = RGB_to_HSV(rgb);

string hsvString = "HSV: Centre : H[" + (int)hsv.Hue + "] S[" +
(int)hsv.Satuation + "] V[" + (int)hsv.Value + "]";

displayColor(hsvString);

button20Clicked = false;
}

//button clicked

if (button45Clicked == true)

{
int hue_half_range=60;
int sat_half_range=15;
int val_half_range=15;

hue_min = (int)hsv.Hue - hue_half_range;
if (hue_min < 9)
hue_min = 0;

142

sat_min = (int)hsv.Satuation - sat_half_range;
if (sat_min < 9)
sat_min = 0;

val_min = (int)hsv.Value - val_half_range;
if (val_min < 9)
val_min = 0;

hue_max = (int)hsv.Hue + hue_half_range;
if (hue_max > 255)
hue_max = 255;

sat_max = (int)hsv.Satuation + sat_half_range;
if (sat_max > 255)

sat_max = 255;
val max = (int)hsv.Value + val_half_range;

if (val_max > 255)
val_max = 255;

button45Clicked = false;

return image;

private void button23_Click(object sender, EventArgs e) //edge detection button
{

if (processingChoice == 1)

{
processingChoice = 9;

}

else

{
trackBarl.Value = edparaml;
labell7.Text = "Thresh = " + Convert.ToInt32(trackBarl.Value);
trackBar2.Value = edparam2;
labell8.Text = "ThreshLinking = " + Convert.ToInt32(trackBar2.Value);
processingChoice = 1;

}

}

private void button24_Click(object sender, EventArgs e) //color detection

{

if (processingChoice == 2)
{

processingChoice = 0;
}
else
{

143

processingChoice = 2;
}

private void button25_Click(object sender, EventArgs e) //Normal Jpeg Display
button

{
processingChoice = 0;
}
private void button16_Click_1(object sender, EventArgs e)
{
if (processingChoice == 3)
{
processingChoice = 0;
}
else
{

trackBar3.Value = segments;
label20.Text = "Segments = " + Convert.ToInt32(trackBar3.Value *
trackBar3.Value);

processingChoice = 3;

}
}
private void button18_Click(object sender, EventArgs e) //rovio 2 find the
ball/commanding
{
if (processingChoice == 4)
{
processingChoice = 0;
}
else
{
processingChoice = 4;
}
}
private void button4l_Click(object sender, EventArgs e)
{
if (processingChoice == 6)
{
processingChoice = 0;
}
else
{
processingChoice = 6;
}
}
private void button17_Click(object sender, EventArgs e)
{
if (processingChoice == 5)
{
processingChoice = 0;
}
else
{
processingChoice = 5;

144

//pink ball commanding Rovio 1 & 2

private void button43_Click(object sender, EventArgs e)

{

if (processingChoice == 8)

{

processingChoice = 0;

playFlag = ©; //stop game flag
}

else

{

processingChoice = 8;

//new ball commanding button rovio 1
private void button21l_Click(object sender, EventArgs e)

{

if (processingChoice == 12)
{
processingChoice = 0;
playFlag = @; //stop game flag
}
else

{

processingChoice = 12;

//circle detection Rovio 1

private void button44_Click(object sender, EventArgs e)

{

if (processingChoice == 7)
{

processingChoice = 0;
}
else
{

processingChoice = 7;

numericUpDownl.Value = N;

labelll.Text = "threshold =" + Convert.ToString(thresholdCircle);
numericUpDown2.Value = paraml;

numericUpDown3.Value = param2;

numericUpDown4.Value = param3;

numericUpDown5.Value = param4;

numericUpDown6.Value = apertureSize;

numericUpDown7.Value = threshold2;

numericUpDown8.Value = thresholdil;

numericUpDown9.Value = accResolution;
numericUpDownl®.Value = minDist;

145

numericUpDownll.Value = cannyThreshold;
numericUpDownl2.Value = accThreshold;

numericUpDownl3.Value = minRadius;
numericUpDownl4.Value = maxRadius;

}
}
private void button49_Click(object sender, EventArgs e)
{
if (processingChoice == 9)
{
processingChoice = 0;
}
else
{
processingChoice = 9;
}
}
private void button50_Click(object sender, EventArgs e)
{
if (processingChoice == 10)
{
processingChoice = 0;
}
else
{
processingChoice = 10;
}
}
private void button51_Click(object sender, EventArgs e)
{
if (processingChoice == 11)
{
processingChoice = 0;
}
else
{
processingChoice = 11;
}
}

[Rk sk ko sk ok stk ok sk ok sk sk Rk R ok ok ok sk ok ok

* k
* Method to diplay *
* Execution Time in *
* Gray Images *
* *

********************************/

//find yellow

//find yellow

//mission 1

public Image<Gray, Byte> displayExecutionTimeInGray(Image<Gray, Byte>

grayImage,Stopwatch swl)

//Frame delay display

Point pointFrameDelayText = new Point(350, 20);

MCvFont fontFrameDelayText = new MCvFont();

CvInvoke.cvInitFont(ref fontFrameDelayText,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_PLAIN, 1, 1, 0, 1,

Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED);

ball rovio 1

ball rovio 2

146

MCvScalar colorFrameDelayText = new MCvScalar(255, 255, 255);

string strFrameDelay = "Execution Time:" + swl.Elapsed.Milliseconds + "ms";

CvInvoke.cvPutText(grayImage, strFrameDelay, pointFrameDelayText, ref
fontFrameDelayText, colorFrameDelayText);

return grayImage;

[HFHA KA KA A KA KA KA AR KA KKK KA KK

* k
* Method to diplay *
* Execution Time in *
* Gray Images *
* k

S KoK KK KK KO KK KK KK KK KKK

public Image<Bgr, Byte> displayExecutionTimeInColor(Image<Bgr, Byte> colorImage,
Stopwatch swl)
{
//Frame delay display
Point pointFrameDelayText = new Point(350, 20);
MCvFont fontFrameDelayText = new MCvFont();
CvInvoke.cvInitFont(ref fontFrameDelayText,
Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_PLAIN, 1.3, 1.3, 0, 2,
Emgu.CV.CvEnum.LINE TYPE.EIGHT_CONNECTED);
MCvScalar colorFrameDelayText = new MCvScalar(@, @, 255);
string strFrameDelay = "Execution Time:" + swl.Elapsed.Milliseconds + "ms";
CvInvoke.cvPutText(colorImage, strFrameDelay, pointFrameDelayText, ref
fontFrameDelayText, colorFrameDelayText);
return colorImage;

}
private void button46_Click(object sender, EventArgs e) //submit rovio 1
{

if (checkBox5.Checked) //rovio 1

¢ roviolURL = "http://192.168.2.11";

else if(checkBox6.Checked) //rovio 2

¢ roviolURL = "http://192.168.2.12";

else if(checkBox7.Checked) //rovio 3

¢ roviolURL = "http://192.168.2.14";

ilse if(checkBox8.Checked) //rovio 4

¢ roviolURL = "http://192.168.2.15";

lee if (checkBox9.Checked) //rovio 5

¢ roviolURL = "http://192.168.2.16";

;* Create rovio object for rovio 1 AGAIN */

roviol = new RovioController("username", "password", roviolURL);
}

private void button47_Click(object sender, EventArgs e) //submit rovio 2

147

if (checkBox5.Checked) //rovio 1

{
rovio2URL = "http://192.168.2.11";

else if (checkBox6.Checked) //rovio 2

¢ rovio2URL = "http://192.168.2.12";
ilse if (checkBox7.Checked) //rovio 3
¢ rovio2URL = "http://192.168.2.14";
ilse if (checkBox8.Checked) //rovio 4
¢ rovio2URL = "http://192.168.2.15";
ilse if (checkBox9.Checked) //rovio 5
¢ rovio2URL = "http://192.168.2.16";
}

/* Create rovio object for rovio 2 AGAIN */
rovio2 = new RovioController("username", "password", rovio2URL);

//display Rovios Coordinates from another thread - UI delegated calling

public void displayPosRoviol(string coordinates)

{
if (this.InvokeRequired)

{
MyDelegateMethod theDelegateMethod = new

MyDelegateMethod(this.displayPosRoviol);
this.Invoke(theDelegateMethod, new object[] { coordinates });
}

else

{
}

this.label8.Text = coordinates;

//DisplayNameAttribute circle position in CircleF detection
public void displayCirclePosition(string circlePosition)
{
if (this.InvokeRequired)
{
MyDelegateMethod7 theDelegateMethod = new
MyDelegateMethod7 (this.displayCirclePosition);
this.Invoke(theDelegateMethod, new object[] { circlePosition });

}

else

{
this.richTextBox1.AppendText(circlePosition+"\n");
this.richTextBox1.ScrollToCaret();

}

}

public void displayColor(string color)

148

if (this.InvokeRequired)

{
MyDelegateMethod8 theDelegateMethod = new
MyDelegateMethod8(this.displayColor);
this.Invoke(theDelegateMethod, new object[] { color });

}

else

{
this.richTextBox2.AppendText(color + "\n");
this.richTextBox2.ScrollToCaret();

}

}

public void displayPosRovio2(string coordinates)

{
if (this.InvokeRequired)

{
MyDelegateMethod theDelegateMethodl = new

MyDelegateMethod(this.displayPosRovio2);
this.Invoke(theDelegateMethodl, new object[] { coordinates });
}

else

{
}

this.label9.Text = coordinates;

//display distance between two rovios
public void displayDistance(decimal distance)
{
if (this.InvokeRequired)
{
MyDelegateMethod5 theDelegateMethod = new
MyDelegateMethod5(this.displayDistance);
this.Invoke(theDelegateMethod, new object[] { distance });
}

else

{

this.labell@.Text = "Distance : "+Convert.ToString(distance);

}

//bars for battery monitoring
//roll progress bar 2

public void rollProgressBar2()

{
if (this.InvokeRequired)

{
MyDelegateMethod2 theDelegateMethod2 = new
MyDelegateMethod2(this.rollProgressBar2);
this.Invoke(theDelegateMethod2, new object[] { 1});
}

else

{

if (this.progressBar2.Value < 100)
this.progressBar2.Value += 10;
else
this.progressBar2.Value = 0;

149

}
//roll progress bar 1

public void rollProgressBarl()

{
if (this.InvokeRequired)

{
MyDelegateMethodl theDelegateMethod3 = new
MyDelegateMethodl(this.rollProgressBarl);
this.Invoke(theDelegateMethod3, new object[] { });

}
else
{
if (this.progressBarl.Value < 100)
this.progressBarl.Value += 10;
else
this.progressBarl.Value = 0;
}

//display battery for Rovio 1
public void displayBarl(int battery)

{
if (this.InvokeRequired)

{
MyDelegateMethod3 theDelegateMethod4 = new
MyDelegateMethod3(this.displayBarl);
this.Invoke(theDelegateMethod4, new object[] { battery });

}
else
if (battery >= 125)
this.progressBarl.Value = 100;
else if (battery >= 123)
this.progressBarl.Value = 90;
else if (battery >= 120)
this.progressBarl.Value = 80;
else if (battery >= 117)
this.progressBarl.Value = 70;
else if (battery >= 114)
this.progressBarl.Value = 60;
else if (battery >= 111)
this.progressBarl.Value = 50;
else if (battery >= 109)
this.progressBarl.Value = 40;
else if (battery >= 107)
this.progressBarl.Value = 30;
else
this.progressBarl.Value = 30;
//this.roviol.GoHome();
}

}

public void displayBar2(int battery2)

{
if (this.InvokeRequired)

{
MyDelegateMethod4 theDelegateMethod5 = new
MyDelegateMethod4 (this.displayBar2);
this.Invoke(theDelegateMethod5, new object[] { battery2 });
}

else

{

150

if (battery2 >= 125)
this.progressBar2.Value = 100;
else if (battery2 >= 123)
this.progressBar2.Value = 90;
else if (battery2 >= 120)
this.progressBar2.Value = 80;
else if (battery2 >= 117)
this.progressBar2.Value = 70;
else if (battery2 >= 114)
this.progressBar2.Value = 60;
else if (battery2 >= 111)
this.progressBar2.Value = 50;
else if (battery2 >= 109)
this.progressBar2.Value = 40;
else if (battery2 >= 107)
this.progressBar2.Value = 30;
else
this.progressBar2.Value = 30;
//this.roviol.GoHome();

//display ball position based on the positioning system
public void displayBallPosition()

{
if (this.InvokeRequired)

{
MyDelegateMethod6 theDelegateMethod = new
MyDelegateMethod6(this.displayBallPosition);
this.Invoke(theDelegateMethod, new object[] { });
}

else

{
//1 deleted this label

//this.labelll.Text = "Ball Position: (" +
Convert.ToString(posix)+","+Convert.ToString(posly)+")" ;

}

//truncate function for displaying decimal digits , theta and distance (2 decimal

digits)
public decimal TruncateFunction(decimal number, int digits)
{
decimal stepper = (decimal)(Math.Pow(10.0, (double)digits));
int temp = (int)(stepper * number);
return (decimal)temp / stepper;
}

//Tab 2 manual controls for all the Rovios
//rovio 1 manual

private void button55_Click(object sender, EventArgs e) //forward
{

}

roviol.ManualDrive(1, speed);

private void button59 Click(object sender, EventArgs e) //down

151

{
}

roviol.ManualDrive(2, speed);

private void button57_Click(object
{

}

roviol.ManualDrive(3, speed);

private void button52_Click(object
{

}

roviol.ManualDrive(4, speed);

private void button54_Click(object
{

}

roviol.ManualDrive(8, speed);

private void button56_Click(object
{

}

roviol.ManualDrive(7, speed);

private void button58_Click(object
{

}

roviol.ManualDrive(9, speed);

private void button53_Click(object
{

}

roviol.ManualDrive(10, speed);

private void button6@_Click(object
{

}

roviol.ManualDrive(@, speed);

private void button98 Click(object
{

}

roviol.ManualDrive (18, speed);

private void button97_Click(object
{

}

roviol.ManualDrive(17, speed);

//rovio 2manual

private void button75_Click(object
{

}

rovio2.ManualDrive(1, speed);

private void button71_Click(object
{

}

rovio2.ManualDrive(2, speed);

private void button77_Click(object
{

rovio2.ManualDrive(4, speed);

sender,

sender,

sender,

sender,

sender,

sender,

sender,

sender,

sender,

sender,

sender,

sender,

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

e)

e)

e)

e)

e)

e)

e)

e)

e)

//1left

//right

//forward right

//forward left

//back left

//back right

//stop

//rotate right

//rotate left

//forward

//back

//right

152

}

private void button73_Click(object sender, EventArgs e)
{

}

rovio2.ManualDrive(3, speed);

private void button76_Click(object sender, EventArgs e)
{

}

rovio2.ManualDrive(8, speed);

private void button74_Click(object sender, EventArgs e)

{
¥

rovio2.ManualDrive(7, speed);

private void button72_Click(object sender, EventArgs e)

{
¥

rovio2.ManualDrive(9, speed);

private void button78_Click(object sender, EventArgs e)
{

}

rovio2.ManualDrive (10, speed);

private void button70_Click(object sender, EventArgs e)

{
}

rovio2.ManualDrive(0, speed);

private void button153_Click(object sender, EventArgs e)

{
¥

rovio2.ManualDrive(18, speed);

private void buttonl52_Click(object sender, EventArgs e)
{

}

rovio2.ManualDrive(17, speed);

//rovio 3 manual
private void button66_Click(object sender, EventArgs e)

{
¥

rovio3.ManualDrive(1, speed);

private void button62_Click(object sender, EventArgs e)

{
¥

rovio3.ManualDrive(2, speed);

private void button64_Click(object sender, EventArgs e)

{
}

rovio3.ManualDrive(3, speed);

private void button68_Click(object sender, EventArgs e)

{
}

rovio3.ManualDrive(4, speed);

//1left

//forward right

//forward left

//back left

//back right

//stop

//rotate right

//rotate left

//forawrd

//back

//1left

//right

153

private void button67_Click(object
{

}

rovio3.ManualDrive(8, speed);

private void button65_Click(object
{

}

rovio3.ManualDrive(7, speed);

private void button63_Click(object
{

}

rovio3.ManualDrive(9, speed);

private void button69_Click(object
{

rovio3.ManualDrive(10, speed);

sender, EventArgs e)

sender, EventArgs e)

sender, EventArgs e)

sender, EventArgs e)

//forward right

//forwrad left

//back left

//back right

//rotate right

private void button146_Click(object sender, EventArgs e) //rotate left

private void button6l1_Click(object sender, EventArgs e) //stop

}
private void buttonl147_Click(object sender, EventArgs e)
{

rovio3.ManualDrive(18, speed);
}
{

rovio3.ManualDrive(17, speed);
}
{

rovio3.ManualDrive(@, speed);
}

//rovio 4 manual

private void button84_Click(object
{

}

rovio4.ManualDrive(1, speed);

private void button80_Click(object
{

}

rovio4.ManualDrive(2, speed);

private void button82_Click(object
{

}

rovio4.ManualDrive(3, speed);

private void button86_Click(object
{

}

rovio4.ManualDrive(4, speed);

private void button85_Click(object
{

}

rovio4.ManualDrive(8, speed);

sender, EventArgs e)

sender, EventArgs e)

sender, EventArgs e) //forward

sender, EventArgs e) //back

sender, EventArgs e) //left

//right

//forward right

154

private void button83_Click(object sender, EventArgs e)
{

}

rovio4.ManualDrive(7, speed);

private void button81_Click(object sender, EventArgs e)
{

}

rovio4.ManualDrive(9, speed);

private void button87_Click(object sender, EventArgs e)
{

}

rovio4.ManualDrive(10, speed);

private void buttonl51_Click(object sender, EventArgs e)

{
¥

rovio4.ManualDrive (18, speed);

private void buttonl150_Click(object sender, EventArgs e)

{
¥

rovio4.ManualDrive(17, speed);

private void button79_Click(object sender, EventArgs e)
{

}

rovio4.ManualDrive(@, speed);

//rovio 5 manual

private void button93_Click(object sender, EventArgs e)
{

}

rovio5.ManualDrive(1, speed);

private void button89_Click(object sender, EventArgs e)

{
¥

rovio5.ManualDrive(2, speed);

private void button91_Click(object sender, EventArgs e)

{
¥

rovio5.ManualDrive(3, speed);

private void button95_Click(object sender, EventArgs e)
{

}

rovio5.ManualDrive(4, speed);

private void button94_Click(object sender, EventArgs e)

{
}

rovio5.ManualDrive(8, speed);

private void button92_Click(object sender, EventArgs e)
{

}

rovio5.ManualDrive(7, speed);

private void button90 Click(object sender, EventArgs e)

//forward left

//back left

//back right

//rotate right

//rotate left

//stop

//forawrd

//back

//1left

//rihgt

//forward right

//forward left

//back left

155

{

rovio5.ManualDrive(9, speed);

}
private void button96_Click(object sender, EventArgs e) //back right
{
rovio5.ManualDrive(10, speed);
}
private void button149_Click(object sender, EventArgs e) //rotate right
{
rovio5.ManualDrive(18, speed);
}
private void buttonl148 Click(object sender, EventArgs e) //rotate left
{
rovio5.ManualDrive(17, speed);
}
private void button88_ Click(object sender, EventArgs e) //stop
{
rovio5.ManualDrive(0, speed);
}
private void button154_Click(object sender, EventArgs e) //enable threads for tab 2
{

enableTab2 = true;

/* Thread for taking images from Rovio 3 */

Thread takeImagesThread3 = new Thread(new ThreadStart(takeImages3));

takeImagesThread3.IsBackground = true; //for the thread to close with the
application

takeImagesThread3.Start();

/* Thread for taking images from Rovio 4 */

Thread takeImagesThread4 = new Thread(new ThreadStart(takeImages4));

takeImagesThread4.IsBackground = true; //for the thread to close with the
application

takeImagesThread4.Start();

/* Thread for taking images from Rovio 5 */

Thread takeImagesThread5 = new Thread(new ThreadStart(takeImages5));

takeImagesThread5.IsBackground = true; //for the thread to close with the
application

takeImagesThread5.Start();

}

private void button20_Click(object sender, EventArgs e)
¢ button20Clicked = true;

}

//rgb to hsv method

public static Hsv RGB_to_HSV(Rgb rgb)

{
int rgb_max = (int)Math.Max(rgb.Red, Math.Max(rgb.Green, rgb.Blue));
int rgb_min = (int)Math.Min(rgb.Red, Math.Min(rgb.Green, rgb.Blue));
Hsv hsv = new Hsv();
hsv.Value = rgb_max;
if (hsv.Value == 0)
{

hsv.Hue = hsv.Satuation = 0;
return hsv;

156

}
hsv.Satuation = 255 * (rgb_max - rgb_min) / hsv.Value;
if (hsv.Satuation == 0)
{
hsv.Hue = 0;
return hsv;
}
/* Compute hue */
if (rgb_max == rgb.Red)

{

hsv.Hue = @ + 43 * (rgb.Green - rgb.Blue) / (rgb_max - rgb_min);
else if (rgb_max == rgb.Green)
{

hsv.Hue = 85 + 43 * (rgb.Blue - rgb.Red) / (rgb_max - rgb_min);

}
else /* rgb_max == rgb.b */

{
hsv.Hue = 171 + 43 * (rgb.Red - rgb.Green) / (rgb_max - rgb_min);
}
return hsv;
}
private void button45_Click(object sender, EventArgs e)
{
button45Clicked = true;
trackBar4.Value = hue_min;
trackBar5.Value = sat_min;
trackBar6.Value = val_min;
trackBar9.Value = hue_max;
trackBar8.Value = sat_max;
trackBar7.Value = val_max;
}

public static Bgr averageBGR(Bgr bgr, Bgr bgrl, Bgr bgr2, Bgr bgr3, Bgr bgr4, Bgr
bgr5, Bgr bgré6, Bgr bgr7, Bgr bgr8)
{
Bgr aveBgr = new Bgr();

aveBgr.Blue = (bgr.Blue + bgrl.Blue + bgr2.Blue + bgr3.Blue + bgr4.Blue +
bgr5.Blue + bgr6.Blue + bgr7.Blue + bgr8.Blue) / 9;

aveBgr.Green = (bgr.Green + bgrl.Green + bgr2.Green + bgr3.Green + bgr4.Green +
bgr5.Green + bgré6.Green + bgr7.Green + bgr8.Green) / 9;

aveBgr.Red = (bgr.Red + bgrl.Red + bgr2.Red + bgr3.Red + bgr4.Red + bgr5.Red +
bgr6.Red + bgr7.Red + bgr8.Red) / 9;

return aveBgr;

}

157

158

APPENDIX B — OPENCV METHODS

Edge Detection

#include "cv.h"

#include "highgui.h”

#include <math.h>

#include <string.h>

#include <stdio.h>

#include <ctype.h>

int main (int argc, char** argv)

{

/lexit key

intc;

/nitialise images that we will need

Iplimage *gray =0;

Iplimage *grayDown =0;

Iplimage *grayUp =0;

/initialise capture structure for incoming video stream

CvCapture* capture=cvCaptureFromCAM(0);

/linitialise the two windows that we will use for output

cvNamedWindow(*'src",1);

cvNamedWindow(* grayDown",1);

cvNamedWindow("grayUp",1);

cvNamedWindow("gray",1);

while(1) //main infinite loop

{

/linitialise the image which stores the incoming stream
Iplimage *src = 0;
src=cvQueryFrame(capture);

if('src) //if there is no frame exit the while(1)

break;

159

if('gray) //if there is no image gray, set the format of the secondary images
{
gray=cvCreatelmage(cvGetSize(src),8,1);
grayDown=cvCreatelmage(cvSize(gray->width/2, gray->height/2),8,1);
grayUp=cvCreatelmage(cvGetSize(src),8,1);

/Imain image processing

/lconvert to gray scale
cvCvtColor(src,gray,CV_BGR2GRAY);
/l[downscale the gray scale image
cvPyrDown(gray,grayDown,CV_GAUSSIAN_5x5);
[lupscale the downscaled image
cvPyrUp(grayDown,grayUp,CV_GAUSSIAN_5x5);
/Iperform the canny edge detection algorithm

/Iwe can expirament with the up and down limit for
/[different results

cvCanny(grayUp,gray,3,100,3);

//shoe the two windows
cvShowlmage("src”,src);
cvShowlmage("grayDown",grayDown);
cvShowlmage("grayUp",grayup);
cvShowlmage("gray",gray);

/lready to exit loop
c=cvWaitKey(10);
if(c==27)break;

}

cvReleaseCapture(&capture);

cvDestroyAllWindows();

160

Color Tracking

#include "cv.h"
#include "highgui.h”
#include <math.h>
#include <string.h>
#include <stdio.h>

#include <ctype.h>

int main (int argc, char** argv)
{
/linitialise key for exit and color choice
int c,key;
//number of iteration for dilationa and erosion
int iterations = 5;
/linitialization of the color range ,here for blue
CvScalar hsv_min={110,190,0};
CvScalar hsv_max={120, 225, 255};

/linitialise the two secondary images that we are going to use
Iplimage *inRange =0;

Iplimage *thresholded =0;

Iplimage *cthresholded =0;

Iplimage *hsv =0;

Iplimage *smoothed =0;

/[capture struct for video stream
CvCapture* capture=cvCaptureFromCAM(0);

/linitialise the two windows
cvNamedWindow(*'src",1);
cvNamedWindow("hsv",1);
cvNamedWindow("'inRange",1);
cvNamedWindow("'thresholded",1);

161

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/Ihere is the menu that corresponds to the tick
/Imenu in my Visual C# application

[/Ifor the Rovios

[lprintf(" ~ Menu \n");
//choose color detection
[lprintf("Choose Color \n");
printf("b: BLUE \n");
printf("p: PURPLE \n");
printf("y: YELLOW \n");
printf("n: Nothing \n");
printf("Enter Character \n");
scanf("%d\n",&key);
printf("you chose:%d\n" key);
if (key==1)
{
CvScalar hsv_min={110,50,110};
CvScalar hsv_max={124, 180, 200};
}
else if (key==2)
{
CvScalar hsv_min={125, 50, 110};
CvScalar hsv_max={150, 180, 200};
}
else if (key==3)
{
CvScalar hsv_min={31, 50, 180},
CvScalar hsv_max={40, 200, 200};

while(1) //main loop

{

162

Iplimage *src = 0;
src=cvQueryFrame(capture);

if(!src) //if there is no frame exit the while(1)

break;

if(!thresholded) //if there is no image thresholded, do the followings

{
hsv=cvCreatelmage(cvGetSize(src),8,3);
thresholded=cvCreatelmage(cvGetSize(src),8,1);
cthresholded=cvCreatelmage(cvGetSize(src),8,1);
inRange=cvCreatelmage(cvGetSize(src),8,1);
smoothed=cvCreatelmage(cvGetSize(src),8,1);

}

/lconvert to HSV

cvCvtColor(src, hsv, CV_BGR2HSV);

//search for the given range

cvinRangeS(hsv, hsv_min, hsv_max, inRange);

[[filtering the gray image

cvSmooth(inRange, smoothed, CV_BLUR, 9, 9, 0, 0);
/lcvSmooth(smoothed, smoothed, CV_BLUR, 9, 9, 0, 0);
/lcvSmooth(smoothed, smoothed, CV_BLUR, 9, 9, 0, 0);

//detecting the appropriate range in the gray scale
cvThreshold(smoothed, thresholded, 12, 256, CV_THRESH_BINARY);

/lopening and closing

cvErode(thresholded, thresholded, NULL, iterations);
cvDilate(thresholded, thresholded, NULL, iterations);
cvDilate(thresholded, thresholded, NULL, iterations);
cvErode(thresholded, thresholded, NULL, iterations);

163

//[show the two images
cvShowlmage('src",src);
cvShowlmage("hsv*,hsv);
cvShowlmage("inRange",inRange);
cvShowlmage("smoothed"”,smoothed);
cvShowlImage("thresholded",thresholded);

/lready to exit loop
c=cvWaitKey(10);
if(c==27)break;

}

cvReleaseCapture(&capture);

cvDestroyAllWindows();

Image Segmentation

#include "cv.h"
#include "highgui.h"
#include <math.h>
#include <string.h>
#include <stdio.h>

#include <ctype.h>

int main (int argc, char** argv)
{
/Ikey for exit
int c;
/[for the number of segments on the image (nxn= the total segments)
Ilexpirement with this variable for different results
int n=8;
/[counters for loop which creates the points
inti,j;
/lcolor of the rectangles
CvScalar colorRect={0,255,255};

164

/text color

CvScalar colorText={0,0,255};

/linitialise the font that we re goin to use
CvFont font;

/linitialise the strings for the display of the two points of each rectangle
char string_p1[40];

char string_p2[40];

/linitialisation of segmented image

Iplimage *segment =0;

[[struct capture

CvCapture* capture=cvCaptureFromCAM(0);
/linitialise the two windows
cvNamedWindow("src",1);

cvNamedWindow("'segment™,1);

while(1) //infinite loop
{
Iplimage *src = 0;

src=cvQueryFrame(capture);

if(!src) //if there is no frame exit the while(1)

break;

if('segment) //if there is no image segment, set its format

{

segment=cvCreatelmage(cvGetSize(src),8,3);
}
/[copy the src to image segment

cvCopy(src,segment,0);

[ltwo for loops
[[for creating the various points

/land display them on the image segment

165

/In X n : the total number of segments
for (I=0;1<=n;i++)
{
for (j =0; j <=n; j++)
{
/[create the points
CvPoint p1={i * src->width / n, j*src->height / n};
CvPoint p2={(i + 1) * src->width / n, (j+1)*src->height / n};

[linitialise the font that we'll use
cvinitFont(&font,CV_FONT_HERSHEY_ COMPLEX,0.5,0.5, 0,1, 8);

/[create the string

/lwhich will display point 1

//of each rectangle

//begin the string with the "(*
strepy(string_pZ1, "(");

char p1_x[5];

/[convert int to string

itoa(pl.x, p1_x, 10);

/lcopy to the end of the previous string
strcat(string_p1, pl_x);

//ladd comma

strcat(string_p1,",");

char p1_y[5];

/lconvert int to string

itoa(pl.y, pl_y, 10);

//add this to the current end
strcat(string_p1, pl_y);
/lcomplete the string for display
strcat(string_pZ1,")");

/[display the final string
cvPutText(segment, string_p1, pl, &font, colorText);

/[display the rectangles based on the two points

166

cvRectangle(segment, p1, p2, colorRect, 1, 8, 0);

}

//show the two images
cvShowlmage('src",src);

cvShowlmage("segment",segment);

/lready to exit loop
c=cvWaitKey(10);
if(c==27)break;

}

cvReleaseCapture(&capture);

cvDestroyAllWindows();

Pink Ball Tracking

#include "cv.h"
#include "highgui.h"
#include <math.h>
#include <string.h>
#include <stdio.h>

#include <ctype.h>

int main (int argc, char** argv)

{
/linitialise the string to display the centre of the detected area
char textCenter[40];
/lexit key
int c;
/literations for erosion and dilation
int iterations = 5;
/linitialise secondary images
Iplimage *thresholded =0;
Iplimage *thresholded2 =0;

167

Iplimage *hsv =0;

//moments to calculate the centre

CvMoments moments;

/Istruct of the centre

CvPoint centre;

/linitialise the color for the centre and the font in RGB
CvScalar colorCenter={0, 255, 255};

CvScalar colorFont={255, 0, 0};

/linitialise the font

CvFont font;

/lthe twopink color ranges for the detection of the pink ball
CvScalar hsv_min={0, 50, 170};

CvScalar hsv_max={10, 180, 256};

CvScalar hsv_min2={170, 50, 170};

CvScalar hsv_max2={256, 180, 26};

IIstructure for capturing the images

CvCapture* capture=cvCaptureFromCAM(0);
/[create two windows to diplay the output
cvNamedWindow("'src",1);
cvNamedWindow("thresholded",1);

while(1) //infinite main loop

{
Iplimage *src = 0;

src=cvQueryFrame(capture);

if(Isrc) //if there is no frame exit the while(1)
break;

if(!thresholded) //if there is no image thresholded, do the followings
{

thresholded=cvCreatelmage(cvGetSize(src),8,1);

thresholded2=cvCreatelmage(cvGetSize(src),8,1);

168

hsv=cvCreatelmage(cvGetSize(src),8,3);

}

/lconvert image to HSV format

cvCvtColor(src, hsv, CV_BGR2HSV);

//search in the first range of pink in HSV

cvinRangeS(hsv, hsv_min, hsv_max, thresholded);

/Isearch in the second range of pink color in HSV
cvinRangeS(hsv, hsv_min2, hsv_max2, thresholded?2);
/llogical or between the two gray thresholded images
cvOr(thresholded, thresholded?2, thresholded, 0);

[[filter - smoothing - BLUR

cvSmooth(thresholded, thresholded, CV_BLUR, 9, 9, 0, 0);
cvSmooth(thresholded, thresholded, CV_BLUR, 9, 9, 0, 0);
cvSmooth(thresholded, thresholded, CV_BLUR, 9, 9, 0, 0);
/lthreshold to hold the disired area
cvThreshold(thresholded, thresholded, 12, 256, CV_THRESH_BINARY);
/lopening and closing - filter the small white areas
cvErode(thresholded, thresholded, O, iterations);
cvDilate(thresholded, thresholded, 0, iterations);
cvDilate(thresholded, thresholded, 0, iterations);
cvErode(thresholded, thresholded, O, iterations);

/Ihold moments from the final gray image
cvMoments(thresholded, &moments, 1);

/[calculate the spatial and central moments

double moment10 = cvGetSpatialMoment(&moments, 1, 0);
double moment01 = cvGetSpatialMoment(&moments, 0, 1);
double areaPink = cvGetCentralMoment(&moments, 0, 0);
/linitialise the position X & y

int posX = 0;

int posY =0;

/[calculate position X &y

posX = cvRound(moment10 / areaPink);

posY = cvRound(moment01 / areaPink);

169

//give to the struct centre

centre.X=posX;

centre.y=posY;

/1if centre position positive (acceptable values)

if (posX >0 && posY > 0)

{

// draw circle and display the position of the gravity center of the pink blob detected
cvCircle(src, centre, 10, colorCenter, -1, 8, 0);
cvinitFont(&font, CV_FONT_HERSHEY_ COMPLEX SMALL,1,1,0,1, 8);
strcpy(textCenter, "(");

char p1_x[5];

itoa(posX, pl_x, 10);

strcat(textCenter, p1_x);

strcat(textCenter,",");
char p1_y[5];

itoa(posY, pl_y, 10);
strcat(textCenter, pl_y);
strcat(textCenter,")");
cvPutText(src, textCenter, centre, &font, colorFont);
}

//show the two windows as an output
cvShowlmage("src"”,src);

cvShowlmage("thresholded",thresholded);

/lready to exit loop
c=cvWaitKey(10);
if(c==27)break;

}

cvReleaseCapture(&capture);

cvDestroyAllWindows();

170

Circle Detection and Dynamic Color Range Adjustment

#include "cv.h"
#include "highgui.h”
#include <math.h>
#include <string.h>
#include <stdio.h>

#include <ctype.h>

#define MIN3(x,y,z) ((y) <=(2) ? (X)) <= () 2 (¥) : (¥)) : (¥) <= () ? (x) : (2)))
#define MAX3(x,y,2) ((y) >=(2) ? () >= (¥) ? () : (¥)) : (}) >=(2) ? (x) : (2)))

struct rgb_color

{

unsigned charr, g, b; /* Channel intensities between 0 and 255 */

struct hsv_color

{
unsigned char hue; /* Hue degree between 0 and 255 */
unsigned char sat; [* Saturation between 0 (gray) and 255 */
unsigned char val; /* Value between 0 (black) and 255 */

1

struct hsv_color rgb_to_hsv(struct rgb_color rgb)
{

struct hsv_color hsv;

unsigned char rgb_min, rgh_max;

rgb_min = MIN3(rgb.r, rgb.g, rgb.b);

rgb_max = MAX3(rgb.r, rgb.g, rgb.b);

hsv.val = rgh_max;

if (hsv.val == 0)

{

hsv.hue = hsv.sat = 0;

171

return hsv;

}

hsv.sat = 255*(rgh_max - rgb_min)/hsv.val;

if (hsv.sat == 0)

{

hsv.hue = 0;

return hsv;

}

/* Compute hue */

if (rgh_max ==rgb.r)

{

hsv.hue = 0 + 43*(rgb.g - rgb.b)/(rgb_max - rgh_min);
}

else if (rgb_max == rgb.g)

{

hsv.hue = 85 + 43*(rgb.b - rgb.r)/(rgb_max - rgb_min);
}

else /* rgh_max ==rgh.b */

{

hsv.hue = 171 + 43*(rgb.r - rgb.g)/(rgb_max - rgh_min);
}

return hsv;

int main (int argc, char** argv)
{
/linitialise structures
struct rgb_color rgb;

struct hsv_color hsv;

int thresh = 50;
CvMemStorage* fstorage = 0;

172

CvScalar centreColor={0,0,0}; //black centre
CvScalar circumColorl={255,255,255}; //purple centre Internal
CvScalar circumColorE={255,0,0}; //purple centre External

/laveraging the values of the colors
int row_x=0,row_x1=0,row_x2=0;
int total=0;

int c,x,y,key;

int px[0], py[O];

int edge_thresh = 1;
Iplimage *csrc=0;
Iplimage *gray =0;
Iplimage *edge =0;
Iplimage *thresholded =0;
Iplimage *hsv2 =0;

CvMemStorage* cstorage = cvCreateMemStorage(0);
fstorage= cvCreateMemStorage(0);

//get the video from webcam

CvCapture* capture=cvCaptureFromCAM(0);

/linitialese windows
cvNamedWindow("src",1);
cvNamedWindow("gray",1);
/lcvNamedWindow("hsv",1);

while(1)
{
Iplimage *src = 0;
src=cvQueryFrame(capture);
if('src) //if there is no frame exit the while(1)

break;

173

if(lcsrc) //if there is no image csrc, do the followings
{
csrc=cvCreatelmage(cvGetSize(src),8,3);
gray=cvCreatelmage(cvGetSize(src),8,1);
edge=cvCreatelmage(cvGetSize(src),8,1);
}
csrc=cvClonelmage(src);
/lcvCvtColor(src,hsv,CV_BGR2HSV);
cvCvtColor(src,gray,CV_BGR2GRAY);
gray->origin=1;
cvThreshold(gray,gray,100,255,CV_THRESH_BINARY);
cvSmooth(gray, gray, CV_GAUSSIAN, 11, 11 ,0,0);
cvCanny(gray, edge, (float)edge thresh*3, (float)edge thresh*7, 5); //cvCanny(gray,
edge, (float)edge_thresh, (float)edge_thresh*3, 5);
CvSeqg* circles = cvHoughCircles(gray, cstorage, CV_HOUGH_GRADIENT, 2, gray-
>height/10, 5,50, 0,100); //5,35,0,0

inti;
for(i = O; circles->total>=1?i<1:i < circles->total; i++) //just make a filter to limit only
<=2 circles to draw
{
float* p = (float*)cvGetSeqElem(circles, i);
cvCircle(src, cvPoint(cvRound(p[0]),cvRound(p[1])), 1, centreColor, 1, 8, 0);
/Iblack circle centre (dot)
cvCircle(src, cvPoint(cvRound(p[0]),cvRound(p[1])), cvRound(p[2])-3, circumColorl,
3,8, 0); /lcircle circuference
cvCircle(src, cvPoint(cvRound(p[0]),cvRound(p[1])), cvRound(p[2]), circumColorE,
3, 8,0); /lcircle circuference
px[i]=cvRound(p[0));
py[i]=cvRound(p[1]);
printf("Centre (%d,%d), Radius: %d\n",px[0],py[0],cvRound(p[2]));

174

key=cvWaitKey(10);

if (key=="a") //sampling
{

printf(*\n\n"); //two new lines

for (y=0;y<src->height;y++)
{
unsigned char* row=&CV_IMAGE_ELEM(src,unsigned char,y,0);

for(x=0;x<src->width*src->nChannels;x+=src->nChannels)

{
/Isearch for the black centre still in RGB? Why?
if(row[x]==0 && row[x+1]==0 && row[x+2]==0)
{
total++;
row_x+=row[x+12];
row_x1l+=row[x+13];
row_x2+=row[x+14];
printf("Centre : R[%d] G[%d] B[%d] \n",row[x+14],row[x+13],row[x+12]);
}
}
}
printf(*\n Average : R[%d] G[%d] B[%(d]

\n",cvRound(row_x2/total),cvRound(row_x1/total),cvRound(row_x/total));
rgb.r=cvRound(row_x2/total);
rgb.g=cvRound(row_x1/total);
rgb.b=cvRound(row_x/total);
hsv = rgb_to_hsv(rgb);
printf("\n >>Average : H[%d] S[%d] V[%d] <<\n\n",hsv.hue, hsv.sat, hsv.val);
printf("\tMenu\n");
printf(" a - Sample Color Again\n™);
printf(*" ¢ - Find color \n\n");

175

key=cvWaitKey(10);

if(key=="c")

{

/[set half ranges of the HSV format
int hue_half_range=90;
int sat_half_range=15;

int val_half_range=15;

/Iset hsv range
int hsv_min_hue=hsv.hue-hue_half_range;
if(hsv_min_hue<0)

hsv_min_hue=0;

int hsv_min_sat=hsv.sat-sat_half_range;
if(hsv_min_sat<0)

hsv_min_sat=0;

int hsv_min_val=hsv.val-val_half_range;
if(hsv_min_val<0)

hsv_min_val=0;

int hsv_max_hue=hsv.hue+hue_half_range;
if(hsv_max_hue>255)

hsv_max_hue=255;
int hsv_max_sat=hsv.sat+sat_half_range;
if(hsv_max_sat>255)

hsv_max_sat=255;

int hsv_max_val=hsv.val+val_half_range;

176

/Ihsv_max_val

hsv_min_val);

hsv_max_val);

if(hsv_max_val>255)

hsv_max_val=255;

CvScalar hsv_min={hsv_min_hue, hsv_min_sat, hsv_min_val}; //hsv_min_val

CvScalar hsv_max={hsv_max_hue, hsv_max_sat, hsv_max_val};

/lprint hsv range
printf("\n HSV_MIN : H[%d] S[%d] V[%d] \n",hsv_min_hue, hsv_min_sat,

printf("\n HSV_MAX : H[%d] S[%d] V[%d] \n",hsv_max_hue, hsv_max_sat,

/literations

int iterations=>5;

CvMoments moments;

CvPoint centre;

/linitialise the color for the centre and the font in RGB
CvScalar colorCenter={255, 255, 0},

CvScalar colorFont={255, 0, 0};

/linitialise the font

CvFont font;

/linitialise the string to display the centre of the detected area
char textCenter[40];

while(1) //infinite loop
{

Iplimage *src = 0;

src=cvQueryFrame(capture);

if(Isrc) //if there is no frame exit the while(1)
break;

if('thresholded) //if there is no image thresholded, do the followings
{

177

thresholded=cvCreatelmage(cvGetSize(src),8,1);

hsv2=cvCreatelmage(cvGetSize(src),8,3);

ks

/[convert image to HSV format

cvCvtColor(src, hsv2, CV_BGR2HSV);

/[search in the first range of pink in HSV

cvinRangeS(hsv2, hsv_min, hsv_max, thresholded);

/[filter - smoothing - BLUR

cvSmooth(thresholded, thresholded, CV_BLUR, 9, 9, 0, 0);
/lcvSmooth(thresholded, thresholded, CV_BLUR, 9, 9, 0, 0);
/lcvSmooth(thresholded, thresholded, CV_BLUR, 9, 9, 0, 0);
/lthreshold to hold the disired area

cvThreshold(thresholded, thresholded, 12, 255, CV_THRESH_BINARY);
/lopening and closing - filter the small white areas
cvErode(thresholded, thresholded, 0, iterations);
cvDilate(thresholded, thresholded, 0, iterations);
cvDilate(thresholded, thresholded, 0, iterations);
cvErode(thresholded, thresholded, 0, iterations);

/Ihold moments from the final gray image
cvMoments(thresholded, &moments, 1);

/[calculate the spatial and central moments

double moment10 = cvGetSpatialMoment(&moments, 1, 0);
double moment01 = cvGetSpatialMoment(&moments, 0, 1);
double areaPink = cvGetCentralMoment(&moments, 0, 0);
/initialise the position X & y

int posX = 0;

int posY =0;

/lcalculate position X & y

posX = cvRound(moment10 / areaPink);

posY = cvRound(moment01 / areaPink);

//give to the struct centre

centre.x=posX;

178

detected

8);

centre.y=posY;

//if centre position positive (acceptable values)
if (posX >0 && posY > 0)

{

/I draw circle and display the position of the gravity center of the pink blob

cvCircle(src, centre, 10, colorCenter, -1, 8, 0);
cvinitFont(&font, CV_FONT_HERSHEY_COMPLEX_SMALL, 1, 1, 0, 1,

strcpy(textCenter, "(*);

char p1_x[5];

itoa(posX, p1_x, 10);

strcat(textCenter, p1_x);

strcat(textCenter,",");

char p1_yI[5];

itoa(posY, pl_y, 10);

strcat(textCenter, p1_y);

strcat(textCenter,")");

cvPutText(src, textCenter, centre, &font, colorFont);
}

//show the two windows as an output
cvShowlmage("src”,src);
cvShowlmage(“thresholded",thresholded);

/lready to exit loop

c=cvWaitKey(10);
if(c==27)break;

cvShowlmage(''src",src);

cvShowlmage(“'gray",gray);

179

/lcvShowlmage("hsv",hsv);
/lrelease memory
cvReleaselmage(&csrc);
cvClearMemStorage(fstorage);
/Iready to exit loop
c=cvWaitKey(10);
if(c==27)break;

}

cvReleaseCapture(&capture);

cvDestroyAllWindows();

180

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Topics
	1.1.1 Tele-presence Robots
	1.1.2 Agent Interaction and Co-operation
	1.1.3 Robot Vision
	1.1.4 Machine Learning

	1.2 Inspiration
	1.2.1 Robot World Cup
	1.2.2 Deep Blue

	1.3 Motivation
	1.4 Scope of the Project
	1.4.1 Objectives

	1.5 Structure of Dissertation

	2 Literature Review
	2.1 Related Work
	2.1.1 The RoboCup
	2.1.2 The Behaviour-Based Approach
	2.1.3 Ball Detection Techniques
	2.1.4 User Interfaces for Robots
	2.1.5 Navigation and Servoing

	2.2 Summary

	3 WowWee Rovio
	3.1 Main Features
	3.2 Features Useful in this Project
	3.2.1 Wireless communication
	3.2.2 Flexible Programming
	3.2.3 Omni-directional Wheels

	3.3 Summary

	4 Telepresence Agents and Artificial Intelligence
	4.1 InfraRed Sensor
	4.1.1 InfraRed Based Wander Algorithm for One Agent
	4.1.2 InfraRed Based Wander Algorithm for Two Rovios

	4.2 Digital Image Processing
	4.2.1 Color Formats
	4.2.2 Image Processing Methods
	4.2.2.1 Edge Detection
	4.2.2.2 Color Tracking
	4.2.2.3 Pink Ball Detection
	4.2.2.4 Segmenting the Image
	4.2.2.5 Dynamic Color Range Adjustment

	4.3 Search And Find Pink Ball
	4.4 Rovios Ball Play
	4.5 Visual Servoing and Navigation Scenario
	4.6 Positioning System
	4.7 Summary

	5 Implementation
	5.1 Open.CV and Emgu.CV
	5.2 Graphical User Interface
	5.2.1 Tab 1
	5.2.1.1 Manual Controls
	5.2.1.2 Report String
	5.2.1.3 IR wander buttons
	5.2.1.4 Find Ball and Mission Buttons
	5.2.1.5 Normal Operation Button
	5.2.1.6 Pink ball Tracking Button
	5.2.1.7 Play with Pink Ball Button
	5.2.1.8 Selecting Rovios
	5.2.1.9 Speed Control
	5.2.1.10 Edge Detection panel
	5.2.1.11 Segmenting Panel
	5.2.1.12 Battery Monitoring Panel
	5.2.1.13 Color Tracking Panel
	5.2.1.14 Circle detection and Dynamic Color Range Adjustment Panel

	5.2.2 Tab 2

	5.3 Threading
	5.4 Summary

	6 Testing & Evaluation
	6.1 Execution Time
	6.1.1 Execution Time in Tab 1
	6.1.1.1 Normal Execution
	6.1.1.2 Edge Detection
	6.1.1.3 Pink Tracking
	6.1.1.4 Color Tracking
	6.1.1.5 Circle Detection

	6.1.2 Results

	6.2 IR based Wandering
	6.3 Find Pink and Yellow Ball
	6.4 Change Agent through Mission
	6.5 Play with Pink Ball
	6.6 Visual Servoing and Navigation Scenario
	6.7 Find New Ball
	6.7.1 Experiments
	6.7.1.1 Experiment 1
	6.7.1.2 Experiment 2
	6.7.1.3 Experiment 3

	6.7.2 Results

	6.8 Summary

	7 Discussion And Conclusions
	7.1 Discussion
	7.2 Future Research and Improvements
	7.3 Conclusions

	8 Bibliography
	Appendix A – Winform Application Code (Visual C#)
	Appendix B – OpenCV Methods

