
MongoDB Operations Best Practices
June 2018

A MongoDB White Paper

Table of Contents
1Introduction

2Preparing for a MongoDB Deployment

13Continuous Availability

16Scaling a MongoDB System

18Managing MongoDB

25Security

27MongoDB Atlas: Database as a Service For MongoDB

28MongoDB Stitch: Backend as a Service

28Conclusion

29We Can Help

29Resources

Introduction

MongoDB is designed to meet the demands of modern

apps with a technology foundation that enables you

through:

1. The document data model – presenting you the bestthe best

way to work with datway to work with dataa.

2. A distributed systems design – allowing you to

intelligently put datintelligently put data whera where you want ite you want it.

3. A unified experience that gives you the frfreedom to runeedom to run

anywheranywheree – allowing you to future-proof your work and

eliminate vendor lock-in.

While some aspects of MongoDB are different from

traditional relational databases, the concepts of the system,

its operations, policies, and procedures will be familiar to

staff who have deployed and operated other database

systems. Organizations have found that DBAs and

operations teams are able to preserve existing investments

by integrating MongoDB into their production

environments, without needing to customize established

operational processes or tools.

This paper provides guidance on best practices for

deploying and managing MongoDB. It assumes familiarity

with the architecture of MongoDB and an understanding of

concepts related to the deployment of enterprise software.

This guide is aimed at users managing the database

themselves. A dedicated guide is provided for users of the

MongoDB database as a service – MongoDB Atlas Best

Practices. MongoDB Atlas is the best way to run MongoDB

in the cloud.

While this guide is broad in scope, it is not exhaustive. You

should refer to MongoDB documentation, starting with the

Production Notes, which detail system configurations that

affect MongoDB. Also consider the no cost, online training

classes offered by MongoDB University. In addition,

MongoDB offers a range of consulting services to work

with you at every stage of your application lifecycle.

1

http://www.mongodb.com/mongodb-architecture
https://www.mongodb.com/collateral/mongodb-atlas-best-practices
https://www.mongodb.com/collateral/mongodb-atlas-best-practices
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/administration/production-notes/
https://university.mongodb.com/courses/catalog
https://www.mongodb.com/products/consulting

Preparing for a MongoDB
Deployment

MongoDB Pluggable Storage Engines

MongoDB exposes a storage engine API, enabling the

integration of pluggable storage engines that extend

MongoDB with new capabilities, and enable optimal use of

specific hardware architectures. MongoDB ships with

multiple supported storage engines:

• The default WWiriredTedTiger storage engineiger storage engine. For most

applications, WiredTiger's granular concurrency control

and native compression will provide the best all-around

performance and storage efficiency for the broadest

range of applications.

• The Encrypted storage engineEncrypted storage engine, protecting highly

sensitive data, without the performance or management

overhead of separate files system encryption. The

Encrypted storage is based upon WiredTiger and so

throughout this document, statements regarding

WiredTiger also apply to the Encrypted storage engine.

This engine is part of MongoDB Enterprise Advanced.

• The In-Memory storage engineIn-Memory storage engine, delivering predictable

latency coupled with real-time analytics for the most

demanding, applications. This engine is part of

MongoDB Enterprise Advanced.

• The MMMAPMAPv1 storage enginev1 storage engine, which is provided for

backwards compatibility only. This engine is deprecated

with the MongoDB 4.0 release.

MongoDB uniquely allows users to mix and match multiple

storage engines within a single MongoDB cluster. This

flexibility provides a more simple and reliable approach to

meeting diverse application needs for data. Traditionally,

multiple database technologies would need to be managed

to meet these needs, with complex, custom integration

code to move data between the technologies, and to

ensure consistent, secure access. While each storage

engine is optimized for different workloads, users still

leverage the same MongoDB query language, data model,

scaling, security, and operational tooling independent of the

engine they use. As a result most of best practices in this

guide apply to all of the supported storage engines. Any

differences in recommendations between the storage

engines are noted.

WiredTiger is the default storage engine for new MongoDB

deployments from MongoDB 3.2; if another engine is

preferred then start the mongod using the

--storageEngine option. If a 3.2+ mongod process is

started and one or more databases already exist, then it will

use whichever storage engine those databases were

created with.

Schema Design

Developers and data architects should work together to

develop the right data model, and they should invest time in

this exercise early in the project. The requirements of the

application should drive the data model, updates, and

queries of your MongoDB system. Given MongoDB's

dynamic schema, developers and data architects can

continue to iterate on the data model throughout the

development and deployment processes to optimize

performance and storage efficiency, as well as support the

addition of new application features. All of this can be done

without expensive schema migrations.

The topic of schema design is significant, and a full

discussion is beyond the scope of this guide. For more

information, please see Data Modeling Considerations for

MongoDB in the MongoDB Documentation. A number of

additional resources are available on-line, including

conference presentations from MongoDB Solutions

Architects and users, as well as the no-cost, web-based

training provided by MongoDB University. MongoDB Global

Consulting Services offers assistance in schema design as

part of the Development Rapid Start service..

The key schema design concepts to keep in mind are as

follows.

Document Model

MongoDB stores data as documents in a binary

representation called BSON. The BSON encoding extends

the popular JSON representation to include additional

types such as int, long, decimal, and date. BSON

documents contain one or more fields, and each field

contains a value of a specific data type, including arrays,

2

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/products/mongodb-enterprise-advanced
http://docs.mongodb.com/manual/data-modeling/
http://docs.mongodb.com/manual/data-modeling/
https://university.mongodb.com/
https://www.mongodb.com/products/consulting

sub-documents, and binary data. It may be helpful to think

of documents as roughly equivalent to rows in a relational

database, and fields as roughly equivalent to columns.

However, MongoDB documents tend to have all related

data for a given object in a single document, whereas in a

relational database that data is usually normalized across

rows in many tables. For example, data that belongs to

parent-child relationships in multiple RDBMS tables can

frequently be collapsed (embedded) into a single

document in MongoDB. For operational applications, the

document model makes JOINs redundant in many cases.

Collections

Collections are groupings of documents. Typically all

documents in a collection have similar or related purposes

for an application. It may be helpful to think of collections

as being analogous to tables in a relational database.

Dynamic Schema & Schema Validation

MongoDB documents can vary in structure. For example,

documents that describe users might all contain the user id

and the last date they logged into the system, but only

some of these documents might contain the user's

shipping address, and perhaps some of those contain

multiple shipping addresses. MongoDB does not require

that all documents conform to the same structure.

Furthermore, there is no need to declare the structure of

documents to the system – documents are self-describing.

While MongoDB’s flexible schema is a powerful feature,

there are situations where strict guarantees on the

schema’s data structure and content are required. Unlike

NoSQL databases that push enforcement of these controls

back into application code, MongoDB provides schema

validation within the database via syntax derived from the

proposed IETF JSON Schema standard.

Using Schema Validation, DevOps and DBA teams can

define a prescribed document structure for each collection,

with the database rejecting any documents that do not

conform to it. Administrators have the flexibility to tune

schema validation according to use case – for example, if a

document fails to comply with the defined structure, it can

be either be rejected or written to the collection while

logging a warning message. Structure can be imposed on

just a subset of fields – for example, requiring a valid

customer name and address, while other fields can be

freeform.

With schema validation, DBAs can apply data governance

standards to their schema, while developers maintain the

benefits of a flexible document model.

As an example, you can add a JSON Schema to enforce

these rules:

• Each document must contain a field named lineItems

• The document may optionally contain other fields

• lineItems must be an array where each element:

◦ Must contain a title (string), price (number no smaller

than 0)

◦ May optionally contain a boolean named purchased

◦ Must contain no further fields

db.createCollection("orders",
{validator: {$jsonSchema:

{
properties: {

lineItems:

{type: "array",
items:{

properties: {
title: {type: "string"},
price: {type: "number",

minimum: 0.0},
purchased: {type: "boolean"}

},
required: ["_id", "title", "price"],
additionalProperties: false

}
}

},
required: ["lineItems"]

}}
})

Indexes

MongoDB uses B-tree indexes to optimize queries. Indexes

are defined on a collection’s document fields. MongoDB

includes support for many indexes, including compound,

geospatial, TTL, text search, sparse, partial, unique, and

others. For more information see the section on indexing

below.

3

http://json-schema.org/
https://docs.mongodb.com/master/reference/operator/query/jsonSchema/

Transactions

Because documents can bring together related data that

would otherwise be modelled across separate parent-child

tables in a tabular schema, MongoDB’s atomic

single-document operations provide transaction semantics

that meet the data integrity needs of the majority of

applications. One or more fields may be written in a single

operation, including updates to multiple sub-documents

and elements of an array. The guarantees provided by

MongoDB ensure complete isolation as a document is

updated; any errors cause the operation to roll back so that

clients receive a consistent view of the document.

MongoDB’s existing document atomicity guarantees will

meet 80-90% of an application’s transactional needs. They

remain the recommended way of enforcing your app’s data

integrity requirements

MongoDB 4.0 adds support for multi-document ACID

transactions, making it even easier for developers to

address more use cases with MongoDB. They feel just like

the transactions developers are familiar with from relational

databases – multi-statement, similar syntax, and easy to

add to any application. Through snapshot isolation,

transactions provide a consistent view of data, enforce

all-or-nothing execution, and do not impact performance

for workloads that do not require them. For those

operations that do require multi-document transactions,

there are several best practices that developers should

observe.

Creating long running transactions, or attempting to

perform an excessive number of operations in a single

ACID transaction can result in high pressure on

WiredTiger’s cache. This is because the cache must

maintain state for all subsequent writes since the oldest

snapshot was created. As a transaction always uses the

same snapshot while it is running, new writes accumulate

in the cache throughout the duration of the transaction.

These writes cannot be flushed until transactions currently

running on old snapshots commit or abort, at which time

the transactions release their locks and WiredTiger can

evict the snapshot. To maintain predictable levels of

database performance, developers should therefore

consider the following:

1. By default, MongoDB will automatically abort any

multi-document transaction that runs for more than 60

seconds. Note that if write volumes to the server are

low, you have the flexibility to tune your transactions for

a longer execution time. To address timeouts, the

transaction should be broken into smaller parts that

allow execution within the configured time limit. You

should also ensure your query patterns are properly

optimized with the appropriate index coverage to allow

fast data access within the transaction.

2. There are no hard limits to the number of documents

that can be read within a transaction. As a best practice,

no more than 1,000 documents should be modified

within a transaction. For operations that need to modify

more than 1,000 documents, developers should break

the transaction into separate parts that process

documents in batches.

3. In MongoDB 4.0, a transaction is represented in a

single oplog entry, therefore must be within the 16MB

document size limit. While an update operation only

stores the deltas of the update (i.e., what has changed),

an insert will store the entire document. As a result, the

combination of oplog descriptions for all statements in

the transaction must be less than 16MB. If this limit is

exceeded, the transaction will be aborted and fully rolled

back. The transaction should therefore be decomposed

into a smaller set of operations that can be represented

in 16MB or less.

4. When a transaction aborts, an exception is returned to

the driver and the transaction is fully rolled back.

Developers should add application logic that can catch

and retry a transaction that aborts due to temporary

exceptions, such as a transient network failure or a

primary replica election. With retryable writes, the

MongoDB drivers will automatically retry the commit

statement of the transaction.

You can review all best practices in the MongoDB

documentation for multi-document transactions.

Visualizing your Schema and Adding Validation
Rules: MongoDB Compass

The MongoDB Compass GUI allows users to understand

the structure of existing data in the database and perform

ad hoc queries against it – all with zero knowledge of

MongoDB's query language. Typical users could include

architects building a new MongoDB project or a DBA who

4

https://docs.mongodb.com/manual/core/retryable-writes/index.html
https://docs.mongodb.com/master/core/transactions/
https://docs.mongodb.com/master/core/transactions/

has inherited a database from an engineering team, and

who must now maintain it in production. You need to

understand what kind of data is present, define what

indexes might be appropriate, and identify if Document

Validation rules should be added to enforce a consistent

document structure.

FigurFigure 1:e 1: View schema & interactively build and execute
database queries with MongoDB Compass

Without MongoDB Compass, users wishing to understand

the shape of their data would have to connect to the

MongoDB shell and write queries to reverse engineer the

document structure, field names, and data types. Similarly,

anyone wanting to run custom queries on the data would

need to understand MongoDB's query language.

MongoDB Compass provides users with a graphical view

of their MongoDB schema by sampling a subset of

documents from a collection. By using sampling, MongoDB

Compass minimizes database overhead and can present

results to the user almost instantly.

Document Size

The maximum BSON document size in MongoDB is 16

MB. Users should avoid certain application patterns that

would allow documents to grow unbounded. For example,

in an e-commerce application it would be difficult to

estimate how many reviews each product might receive

from customers. Furthermore, it is typically the case that

only a subset of reviews is displayed to a user, such as the

most popular or the most recent reviews. Rather than

modeling the product and customer reviews as a single

document it would be better to model each review or

groups of reviews as a separate document with a

reference to the product document; while also storing the

key reviews in the product document for fast access.

GridFS

For files larger than 16 MB, MongoDB provides a

convention called GridFS, which is implemented by all

MongoDB drivers. GridFS automatically divides large data

into 256 KB pieces called chunks and maintains the

metadata for all chunks. GridFS allows for retrieval of

individual chunks as well as entire documents. For example,

an application could quickly jump to a specific timestamp in

a video. GridFS is frequently used to store large binary files

such as images and videos in MongoDB.

Data Lifecycle Management

MongoDB provides features to facilitate the management

of data lifecycles, including Time to Live indexes, and

capped collections. In addition, by using MongoDB Zones,

administrators can build highly efficient tiered storage

models to support the data lifecycle. By assigning shards to

Zones, administrators can balance query latency with

storage density and cost by assigning data sets based on a

value such as a timestamp to specific storage devices:

• Recent, frequently accessed data can be assigned to

high performance SSDs with Snappy compression

enabled.

• Older, less frequently accessed data is tagged to

lower-throughput hard disk drives where it is

compressed with zlib to attain maximum storage density

with a lower cost-per-bit.

• As data ages, MongoDB automatically migrates it

between storage tiers, without administrators having to

build tools or ETL processes to manage data

movement.

You can learn more about sharding using Zones later in

this guide.

Time to Live (TTL)

If documents in a collection should only persist for a

pre-defined period of time, the TTL feature can be used to

5

https://docs.mongodb.com/master/core/zone-sharding/

automatically delete documents of a certain age rather

than scheduling a process to check the age of all

documents and run a series of deletes. For example, if user

sessions should only exist for one hour, the TTL can be set

to 3600 seconds for a date field called lastActivity

that exists in documents used to track user sessions and

their last interaction with the system. A background thread

will automatically check all these documents and delete

those that have been idle for more than 3600 seconds.

Another example use case for TTL is a price quote that

should automatically expire after a period of time.

Capped Collections

In some cases a rolling window of data should be

maintained in the system based on data size. Capped

collections are fixed-size collections that support

high-throughput inserts and reads based on insertion order.

A capped collection behaves like a circular buffer: data is

inserted into the collection, that insertion order is

preserved, and when the total size reaches the threshold of

the capped collection, the oldest documents are deleted to

make room for the newest documents. For example, store

log information from a high-volume system in a capped

collection to quickly retrieve the most recent log entries.

Dropping a Collection

It is very efficient to drop a collection in MongoDB. If your

data lifecycle management requires periodically deleting

large volumes of documents, it may be best to model those

documents as a single collection. Dropping a collection is

much more efficient than removing all documents or a

large subset of a collection, just as dropping a table is more

efficient than deleting all the rows in a table in a relational

database.

WiredTiger automatically reclaims disk space after a

collection is dropped.

Indexing

Like most database management systems, indexes are a

crucial mechanism for optimizing system performance in

MongoDB. While indexes will improve the performance of

some operations by one or more orders of magnitude, they

incur overhead to writes, disk space, and memory usage.

Users should always create indexes to support queries, but

should not maintain indexes that queries do not use. This is

particularly important for deployments that support

insert-heavy (or writes which modify indexed values)

workloads.

For operational simplicity, the Performance Advisor in

MongoDB Ops Manager and Cloud Manager platforms can

identify missing indexes, enabling the administrator to then

automate the process of rolling them out – while avoiding

any application impact. Ops Manager and Cloud Manager

are discussed later in this guide.

To understand the effectiveness of the existing indexes

being used, an $indexStats aggregation stage can be

used to determine how frequently each index is used.

MongoDB Compass visualizes index coverage, enabling

you to determine which specific fields are indexed, their

type, size, and how often they are used.

Query Optimization

Queries are automatically optimized by MongoDB to make

evaluation of the query as efficient as possible. Evaluation

normally includes the selection of data based on

predicates, and the sorting of data based on the sort

criteria provided. The query optimizer selects the best

indexes to use by periodically running alternate query plans

and selecting the index with the best performance for each

query type. The results of this empirical test are stored as a

cached query plan and periodically updated.

MongoDB provides an explain plan capability that shows

information about how a query will be, or was, resolved,

including:

• The number of documents returned

• The number of documents read

• Which indexes were used

• Whether the query was covered, meaning no documents

needed to be read to return results

• Whether an in-memory sort was performed, which

indicates an index would be beneficial

• The number of index entries scanned

• How long the query took to resolve in milliseconds

(when using the executionStats mode)

6

https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/cloud
https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/
https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/
https://www.mongodb.com/products/compass
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/cursor.explain/#executionstats-mode
https://docs.mongodb.com/manual/reference/method/cursor.explain/#executionstats-mode

• Which alternative query plans were rejected (when

using the allPlansExecution mode)

The explain plan will show 0 milliseconds if the query was

resolved in less than 1 ms, which is typical in well-tuned

systems. When the explain plan is called, prior cached

query plans are abandoned, and the process of testing

multiple indexes is repeated to ensure the best possible

plan is used. The query plan can be calculated and

returned without first having to run the query. This enables

DBAs to review which plan will be used to execute the

query, without having to wait for the query to run to

completion.

MongoDB Compass provides the ability to visualize explain

plans, presenting key information on how a query

performed – for example the number of documents

returned, execution time, index usage, and more. Each

stage of the execution pipeline is represented as a node in

a tree, making it simple to view explain plans from queries

distributed across multiple nodes.

FigurFigure 2:e 2: MongoDB Compass visual query plan for
performance optimization across distributed clusters

If the application will always use indexes, MongoDB can be

configured through the notablescan setting to throw an

error if a query is issued that requires scanning the entire

collection.

Profiling

MongoDB provides a profiling capability called Database

Profiler, which logs fine-grained information about

database operations. The profiler can be enabled to log

information for all events or only those events whose

duration exceeds a configurable threshold (whose default

is 100 ms). Profiling data is stored in a capped collection

where it can easily be searched for relevant events. It may

be easier to query this collection than parsing the log files.

MongoDB Ops Manager and Cloud Manager can be used

to visualize output from the profiler when identifying slow

queries. The Visual Query Profiler provides a quick and

convenient way for operations teams and DBAs to analyze

specific queries or query families. The Visual Query Profiler

(as shown in Figure 3) displays how query and write

latency varies over time – making it simple to identify

slower queries with common access patterns and

characteristics, as well as identify any latency spikes. A

single click in the Ops Manager UI activates the profiler,

which then consolidates and displays metrics from every

node in a single screen.

The Visual Query Profiler will analyze the data –

recommending additional indexes and optionally add them

through an automated, rolling index build.

FigurFigure 3:e 3: Visual Query Profiling in MongoDB Ops Manager

As noted above, the Performance Advisor can

automatically notify you of missing indexes.

Primary and Secondary Indexes

A unique index on the _id attribute is created for all

documents. MongoDB will automatically create the _id

field and assign a unique value if the value is not be

specified when the document is inserted. All user-defined

indexes are secondary indexes. MongoDB includes support

for many types of secondary indexes that can be declared

on any field(s) in the document, including fields within

arrays and sub-documents. Index options include:

• Compound indexes

7

https://docs.mongodb.com/manual/reference/method/cursor.explain/#allplansexecution-mode
https://docs.mongodb.com/manual/reference/method/cursor.explain/#allplansexecution-mode
https://docs.mongodb.com/manual/reference/parameters/#param.notablescan
https://docs.mongodb.com/manual/reference/parameters/#param.notablescan

• Geospatial indexes

• Text search indexes

• Unique indexes

• Array indexes

• TTL indexes

• Sparse indexes

• Partial Indexes

• Hash indexes

• Collated indexes for different languages

You can learn more about each of these indexes from the

MongoDB Architecture Guide

Index Creation Options

Indexes and data are updated synchronously in MongoDB,

thus ensuring queries on indexes never return stale or

deleted data. The appropriate indexes should be

determined as part of the schema design process, and can

be added or removed at any time. By default creating an

index is a blocking operation in MongoDB. Because the

creation of indexes can be time and resource intensive,

MongoDB provides an option for creating new indexes as a

background operation on both the primary and secondary

members of a replica set. When the background option is

enabled, the total time to create an index will be greater

than if the index was created in the foreground, but it will

still be possible to query the database while creating

indexes.

A common practice is to build the indexes in the

foreground, first on the secondaries and then on the

demoted primary. Ops Manager and Cloud Manager

automate this process.

In addition, multiple indexes can be built concurrently in the

background. Refer to the Build Index on Replica Sets

documentation to learn more about considerations for

index creation and on-going maintenance.

Managing Indexes with the MongoDB WiredTiger
Storage Engine

The WiredTiger storage engine offers optimizations that

you can take advantage of:

• By default, WiredTiger uses prefix compression to

reduce index footprint on both persistent storage and in

RAM. This enables administrators to dedicate more of

the working set to manage frequently accessed

documents. Compression ratios of around 50% are

typical, but users are encouraged to evaluate the actual

ratio they can expect by testing their own workloads.

• Administrators can place indexes on their own separate

storage volume, allowing for faster disk paging and

lower contention.

Index Limitations

As with any database, indexes consume disk space and

memory, so should only be used as necessary. Indexes can

impact update performance. An update must first locate

the data to change, so an index will help in this regard, but

index maintenance itself has overhead and this work will

reduce update performance.

There are several index limitations that should be observed

when deploying MongoDB:

• A collection cannot have more than 64 indexes.

• Index entries cannot exceed 1024 bytes.

• The name of an index must not exceed 125 characters

(including its namespace).

• In-memory sorting of data without an index is limited to

32MB. This operation is very CPU intensive, and

in-memory sorts indicate an index should be created to

optimize these queries.

Common Mistakes Regarding Indexes

The following tips may help to avoid some common

mistakes regarding indexes:

• Use a compound index rather than indexUse a compound index rather than index

intersection:intersection: For best performance when querying via

multiple predicates, compound indexes will generally be

a better option.

• Compound indexesCompound indexes: Compound indexes are defined

and ordered by field. So, if a compound index is defined

for last name, first name, and city, queries that

specify last name or last name, and first name

will be able to use this index, but queries that try to

8

https://www.mongodb.com/collateral/mongodb-architecture-guide
http://docs.mongodb.com/manual/tutorial/build-indexes-on-replica-sets/
http://docs.mongodb.com/manual/tutorial/build-indexes-on-replica-sets/

search based on city will not be able to benefit from

this index. Remove indexes that are prefixes of other

indexes.

• LLow selectivity indexesow selectivity indexes: An index should radically

reduce the set of possible documents to select from.

For example, an index on a field that indicates gender is

not as beneficial as an index on zip code, or even better,

phone number.

• Regular exprRegular expressionsessions: Indexes are ordered by value,

hence leading wildcards are inefficient and may result in

full index scans. Trailing wildcards can be efficient if

there are sufficient case-sensitive leading characters in

the expression.

• NegationNegation: Inequality queries can be inefficient with

respect to indexes. Like most database systems,

MongoDB does not index the absence of values and

negation conditions may require scanning all

documents. If negation is the only condition and it is not

selective (for example, querying an orders table, where

99% of the orders are complete, to identify those that

have not been fulfilled), all records will need to be

scanned.

• Eliminate unnecessary indexesEliminate unnecessary indexes: Indexes are

resource-intensive: even with they consume RAM, and

as fields are updated their associated indexes must be

maintained, incurring additional disk I/O overhead. To

understand the effectiveness of existing indexes use

the strategies described earlier.

• Partial indexesPartial indexes: If only a subset of documents need to

be included in a given index then the index can be made

partial by specifying a filter expression. e.g., if an index

on the userID field is only needed for querying open

orders then it can be made conditional on the order

status being set to in progress. In this way, partial

indexes improve query performance while minimizing

overheads.

Working Sets

MongoDB makes extensive use of RAM to speed up

database operations. In MongoDB, all data is read and

manipulated through in-memory representations of the

data. The WiredTiger storage engine manages data

through its internal cache but it also benefits from pages

held in the filesystem cache.

The set of data and indexes that are accessed during

normal operations is called the working set. It is best

practice that the working set fits in RAM. It may be the

case the working set represents a fraction of the entire

database, such as in applications where data related to

recent events or popular products is accessed most

commonly.

Page faults occur when MongoDB attempts to access data

that has not been loaded in RAM. If there is free memory

then the operating system can locate the page on disk and

load it into memory directly. However, if there is no free

memory, the operating system must write a page that is in

memory to disk, and then read the requested page into

memory when it is required by the application. This process

can be time consuming and will be significantly slower than

accessing data that is already resident in memory.

Some operations may inadvertently purge a large

percentage of the working set from memory, which

adversely affects performance. For example, a query that

scans all documents in the database, where the database

is larger than available RAM on the server, will cause

documents to be read into memory and may lead to

portions of the working set being written out to disk. Other

examples include various maintenance operations such as

compacting or repairing a database, and rebuilding indexes.

If your database working set size exceeds the available

RAM of your system, consider increasing RAM capacity or

adding sharding the database across additional servers.

For a discussion on this topic, refer to the section on

Sharding Best Practices. It is far easier to implement

sharding before the system’s resources are consumed, so

capacity planning is an important element in successful

project delivery.

Refer to the documentation for configuring the WiredTiger

internal cache size.

9

https://docs.mongodb.com/manual/core/index-partial/
http://docs.mongodb.com/manual/administration/production-notes/#id3

MongoDB Setup and Configuration

Setup

MongoDB provides repositories for .deb and .rpm

packages for consistent setup, upgrade, system integration,

and configuration. This software uses the same binaries as

the tarball packages provided from the MongoDB

Downloads Page. The MongoDB Windows package is

available via the downloadable binary installed via its MSI.

Binaries for OS X are also provided in a tarball1.

Database Configuration

User should store configuration options in mongod's

configuration file. This allows sysadmins to implement

consistent configurations across entire clusters. The

configuration files support all options provided as

command line options for mongod. Popular tools such as

Ansible, Chef, and Puppet can be used to provision

MongoDB instances. The provisioning of complex

topologies comprising replica sets and sharded clusters

can be automated by the the Ops Manager and Cloud

Manager platforms, which are discussed later in this guide.

Upgrades

Users should upgrade software as often as possible so

that they can take advantage of the latest features as well

as any stability updates or bug fixes. Upgrades should be

tested in non-production environments to validate correct

application behavior.

Customers can deploy rolling upgrades without incurring

any downtime, as each member of a replica set can be

upgraded individually without impacting database

availability. It is possible for each member of a replica set to

run under different versions of MongoDB, and with

different storage engines. As a precaution, the MongoDB

release notes should be consulted to determine if there is

a particular order of upgrade steps that needs to be

followed, and whether there are any incompatibilities

between two specific versions. Upgrades can be

automated with Ops Manager and Cloud Manager.

Data Migration

Users should assess how best to model their data for their

applications rather than simply importing the flat file

exports of their legacy systems. In a traditional relational

database environment, data tends to be moved between

systems using delimited flat files such as CSV. While it is

possible to ingest data into MongoDB from CSV files, this

may in fact only be the first step in a data migration

process. It is typically the case that MongoDB's document

data model provides advantages and alternatives that do

not exist in a relational data model.

The mongoimport and mongoexport tools are provided

with MongoDB for simple loading or exporting of data in

JSON or CSV format. These tools may be useful in moving

data between systems as an initial step. Other tools such

as mongodump and mongorestore, or Ops Manager and

Cloud Manager backups are useful for moving data

between different MongoDB systems.

There are many options to migrate data from flat files into

rich JSON documents, including mongoimport, custom

scripts, ETL tools, and from within an application itself

which can read from the existing RDBMS and then write a

JSON version of the document back to MongoDB.

Hardware

The following recommendations are only intended to

provide high-level guidance for hardware for a MongoDB

deployment. The specific configuration of your hardware

will be dependent on your data, queries, performance SLA,

availability requirements, and the capabilities of the

underlying hardware infrastructure. MongoDB has

extensive experience helping customers to select hardware

and tune their configurations and we frequently work with

customers to plan for and optimize their MongoDB

systems. The Health Check, Operations Rapid Start, and

Production Readiness consulting packages can be

especially valuable in helping select the appropriate

hardware for your project.

MongoDB was specifically designed with commodity

hardware in mind and has few hardware requirements or

limitations. Generally speaking, MongoDB will take

advantage of more RAM and faster CPU clock speeds.

1. OS X is intended as a development rather than a production environment

10

http://www.mongodb.com/downloads
http://www.mongodb.com/downloads
https://docs.mongodb.com/manual/release-notes/
https://docs.mongodb.com/manual/release-notes/
http://docs.mongodb.com/manual/reference/program/mongoimport/
http://docs.mongodb.com/manual/reference/program/mongoimport/
https://www.mongodb.com/products/consulting

Memory

MongoDB makes extensive use of RAM to increase

performance. Ideally, the working set fits in RAM. As a

general rule of thumb, the more RAM, the better. As

workloads begin to access data that is not in RAM, the

performance of MongoDB will degrade, as it will for any

database. The default WiredTiger storage engine gives

more control of memory by allowing users to configure how

much RAM to allocate to the WiredTiger internal cache –

defaulting to 60% of RAM minus 1 GB. WiredTiger also

exploits the operating system’s filesystem cache which will

grow to utilize the remaining memory available.

Storage

MongoDB does not require shared storage (e.g., storage

area networks). MongoDB can use local attached storage

as well as solid state drives (SSDs). Most disk access

patterns in MongoDB do not have sequential properties,

and as a result, customers may experience substantial

performance gains by using SSDs. Good results and strong

price to performance have been observed with SATA SSD

and with PCIe. Commodity SATA spinning drives are

comparable to higher cost spinning drives due to the

non-sequential access patterns of MongoDB: rather than

spending more on expensive spinning drives, that budget

may be more effectively invested on increasing RAM or

using SSDs. Another benefit of using SSDs is the

performance benefit of flash over hard disk drives if the

working set no longer fits in memory.

While data files benefit from SSDs, MongoDB's journal

files are good candidates for fast, conventional disks due

to their high sequential write profile. See the section on

journaling later in this guide for more information.

Most MongoDB deployments should use RAID-10. RAID-5

and RAID-6 have limitations and may not provide sufficient

performance. RAID-0 provides good read and write

performance, but insufficient fault tolerance. MongoDB's

replica sets allow deployments to provide stronger

availability for data, and should be considered with RAID

and other factors to meet the desired availability SLA.

If using Amazon EC2 then select the required IOPS rate

using the Provisioned-IOPS option when configuring

storage to provide consistent storage performance.

As with networking, use paravirtualized drivers for your

storage when running on VMs.

Compression

MongoDB natively supports compression when using the

default WiredTiger storage engine. Compression reduces

storage footprint by as much as 80%, and enables higher

storage I/O scalability as fewer bits are read from disk. As

with any compression algorithm, administrators trade

storage efficiency for CPU overhead, and so it is important

to test the impacts of compression in your own

environment.

MongoDB offers administrators a range of compression

options for documents, indexes, and the journal. The

default Snappy compression algorithm provides a good

balance between high document and journal compression

ratio (typically around 70%, dependent on the data) with

low CPU overhead, while the optional zlib library will

achieve higher compression, but incur additional CPU

cycles as data is written to and read from disk. Indexes in

WiredTiger uses prefix compression, which serves to

reduce the in-memory footprint of index storage, freeing up

more of the working set for frequently accessed

documents. Administrators can modify the default

compression settings for all collections. Compression can

also be specified on a per-collection basis during collection

creation.

CPU

MongoDB will deliver better performance on faster CPUs.

The MongoDB WiredTiger storage engine is able to

saturate multi-core processor resources. The Encrypted

Storage engine adds an average of 10% overhead

compared to WiredTiger due to a portion of available CPU

being used for encryption/decryption – the actual impact

will be dependent on your data set and workload.

Process Per Host

For best performance, users should run one mongod

process per host. With appropriate sizing and resource

allocation using virtualization or container technologies,

multiple MongoDB processes can run on a single server

without contending for resources. Using the WiredTiger

11

storage engine, administrators will need to calculate the

appropriate cache size for each instance by evaluating

what portion of total RAM each of them should use, and

splitting the default cache_size between each.

For availability, multiple members of the same replica set

should never be co-located on the same physical hardware

or share any single point of failure such as a power supply.

When running in the cloud, make use of your provider’s

ability to deploy across availability zones to ensure that

members from each replica set are geographically

dispersed and do not share the same power, hypervisor or

network. The MongoDB Atlas database service will take of

all of this for you.

Sizing for mongos and Config Server Processes

For sharded systems, additional processes must be

deployed alongside the mongod data storing processes:

mongos query routers and config servers. Shards are

physical partitions of data spread across multiple servers.

For more on sharding, please see the section on horizontal

scaling with shards. Queries are routed to the appropriate

shards using a query router process called mongos. The

metadata used by mongos to determine where to route a

query is maintained by the config servers. Both mongos

and config server processes are lightweight, but each has

somewhat different sizing requirements.

Within a shard, MongoDB further partitions documents into

chunks. MongoDB maintains metadata about the

relationship of chunks to shards in the config database.

Three or more config servers are maintained in sharded

deployments to ensure availability of the metadata at all

times. Shard metadata access is infrequent: each mongos

maintains a cache of this data, which is periodically

updated by background processes when chunks are split

or migrated to other shards, typically during balancing

operations as the cluster expands and contracts. The

hardware for a config server should therefore be focused

on availability: redundant power supplies, redundant

network interfaces, redundant RAID controllers, and

redundant storage should be used. Config servers can be

deployed as a replica set with up to 50 members.

Typically multiple mongos instances are used in a sharded

MongoDB system. It is not uncommon for MongoDB users

to deploy a mongos instance on each of their application

servers. The optimal number of mongos servers will be

determined by the specific workload of the application: in

some cases mongos simply routes queries to the

appropriate shard, and in other cases mongos must route

them to multiple shards and merge the result sets. To

estimate the memory requirements for each mongos,

consider the following:

• The total size of the shard metadata that is cached by

mongos

• 1MB for each application connection

The mongos process uses limited RAM and will benefit

more from fast CPUs and networks.

Operating System and File System

Configurations for Linux

Only 64-bit versions of operating systems are supported

for use with MongoDB.

Version 2.6.36 of the Linux kernel or later should be used

for MongoDB in production.

Use XFS file systems; avoid EXT3.** EXT3 is quite old and

is not optimal for most database workloads. With the

WiredTiger storage engine, use of XFS is strongly

recommended to avoid performance issues that have been

observed when using EXT4 with WiredTiger.

For MongoDB on Linux use the following recommended

configurations:

• Turn off atime for the storage volume with the

database files.

• Do not use Huge Pages virtual memory pages,

MongoDB performs better with normal virtual memory

pages.

• Disable NUMA in your BIOS or invoke mongod with

NUMA disabled.

• Ensure that readahead settings for the block devices

that store the database files are relatively small as most

access is non-sequential. For example, setting

readahead to 32 (16 KB) is a good starting point.

12

https://www.mongodb.com/cloud/atlas
https://docs.mongodb.com/manual/reference/program/mongos/
https://docs.mongodb.com/manual/reference/program/mongos/
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/

• Synchronize time between your hosts – for example,

using NTP. This is especially important in sharded

MongoDB clusters. This also applies to VM guests

running MongoDB processes.

Linux provides controls to limit the number of resources

and open files on a per-process and per-user basis. The

default settings may be insufficient for MongoDB.

Generally MongoDB should be the only process on a

system, VM, or container to ensure there is no contention

with other processes.

While each deployment has unique requirements, the

following configurations are a good starting point for

mongod and mongos instances. Use ulimit to apply these

settings:

• -f (file size): unlimited

• -t (CPU time): unlimited

• -v (virtual memory): unlimited

• -n (open files): above 20,000

• -m (memory size): unlimited

• -u (processes/threads): above 20,000

For more on using ulimit to set the resource limits for

MongoDB, see the MongoDB Documentation page on

Linux ulimit Settings.

Networking

Always run MongoDB in a trusted environment with

network rules that prevent access from all unknown

entities. There are a finite number of predefined processes

that communicate with a MongoDB system: application

servers, monitoring processes, and other MongoDB

processes running in a replica set or sharded cluster.

From the MongoDB 3.6 release onwards, MongoDB binds

to localhost by default. As a result, all networked

connections to the database will be denied unless explicitly

configured by an administrator. Review the documentation.

If your system has more than one network interface, bind

MongoDB processes to the private or internal network

interface.

Detailed information on default port numbers for

MongoDB, configuring firewalls for MongoDB, VPN, and

other topics is available in the MongoDB Security Tutorials.

Review the Security section later in this guide for more

information on best practices on securing your deployment.

MongoDB offers IP whitelisting, allowing administrators to

configure MongoDB to only accept external connections

from approved IP addresses or CIDR ranges that have

been explicitly added to the whitelist.

When running on virtual machines, use paravirtualized

drivers to implement an optimized network and storage

interfaces that passes instructions between the virtual

machine and the hypervisor with minimal overhead.

Network Compression

As a distributed database, MongoDB relies on efficient

network transport during query routing and inter-node

replication. MongoDB compresses all network traffic

between client and the database, and traffic between

nodes of the cluster. Based on the snappy compression

algorithm, network traffic can be compressed by up to

70%, providing major performance benefits in

bandwidth-constrained environments, and reducing

networking costs.

Compressing and decompressing network traffic requires

CPU resources – typically low single digit percentage

overhead. Compression is ideal for those environments

where performance is bottlenecked by bandwidth, and

sufficient CPU capacity is available.

Production-Proven Recommendations

The latest recommendations on specific configurations for

operating systems, file systems, storage devices, and other

system-related topics are maintained in the MongoDB

Production Notes.

Continuous Availability

Under normal operating conditions, a MongoDB system will

perform according to the performance and functional goals

of the system. However, from time to time certain inevitable

failures or unintended actions can affect a system in

adverse ways. Hard drives, network cards, power supplies,

13

http://www.ntp.org/
http://docs.mongodb.com/manual/reference/ulimit/
https://docs.mongodb.com/manual/release-notes/3.6-compatibility/#bind-ip-compatibility
http://docs.mongodb.com/manual/administration/security/
https://en.wikipedia.org/wiki/Paravirtualization
https://en.wikipedia.org/wiki/Paravirtualization
http://docs.mongodb.com/manual/administration/production-notes/
http://docs.mongodb.com/manual/administration/production-notes/

and other hardware components will fail. These risks can

be mitigated with redundant hardware components.

Similarly, a MongoDB system provides configurable

redundancy throughout its software components as well as

configurable data redundancy.

Journaling

MongoDB implements write-ahead journaling of operations

to enable fast crash recovery and durability in the storage

engine. In the case of a server crash, journal entries are

recovered when the server process is restarted.

The WiredTiger journal ensures that writes are persisted to

disk between checkpoints. WiredTiger uses checkpoints to

flush data to disk by default every 60 seconds after the

prior flush or after 2GB of data has been written. Thus, by

default, WiredTiger can lose more than 60 seconds of

writes if running without journaling – though the risk of this

loss will typically be much less if using replication to other

nodes for additional durability. The WiredTiger write ahead

log is not necessary to keep the data files in a consistent

state in the event of an unclean shutdown, and so it is safe

to run without journaling enabled, though to ensure

durability the "replica safe" write concern should be used

(see the Write Availability section later in the guide for

more information).

WiredTiger provides the ability to compress the journal on

disk, thereby reducing storage space.

For additional guarantees, the administrator can configure

the journaled write concern, whereby MongoDB

acknowledges the write operation only after committing

the data to the journal. When using a write concern greater

than 1 and the v1 replication protocol2, the application will

not receive an acknowledgement until the write has been

journaled on the specified number of secondaries and

when using a write concern of “majority” it must also be

journaled on the primary.

Locating MongoDB's journal files and data files on

separate storage arrays can help performance. The I/O

patterns for the journal are very sequential in nature and

are well suited for storage devices that are optimized for

fast sequential writes, whereas the data files are well

suited for storage devices that are optimized for random

reads and writes. Simply placing the journal files on a

separate storage device normally provides some

performance enhancements by reducing disk contention.

Learn more about journaling from the documentation.

Data Redundancy

MongoDB maintains multiple copies of data, called replica

sets, using native replication. Users should use replica sets

to help prevent database downtime. Replica failover is fully

automated in MongoDB, so it is not necessary to manually

intervene to recover nodes in the event of a failure.

A replica set consists of multiple replica nodes. At any

given time, one member acts as the primary replica and the

other members act as secondary replicas. If the primary

replica set member suffers an outage (e.g., a power failure,

hardware fault, network partition), one of the secondary

members is automatically elected to primary, typically within

several seconds, and the client connections automatically

failover to that new primary. Any writes that could not be

serviced during the election can be automatically retried by

the drivers once a new primary is established, with the

MongoDB server enforcing exactly-once processing

semantics. Retryable writes enable MongoDB to ensure

write availability, without sacrificing data consistency.

Sophisticated algorithms control the election process,

ensuring only the most suitable secondary member is

promoted to primary, and reducing the risk of unnecessary

failovers (also known as "false positives"). The election

algorithm processes a range of parameters including

analysis of histories to identify those replica set members

that have applied the most recent updates from the

primary, heartbeat and connectivity status, and

user-defined priorities assigned to replica set members.

For example, administrators can configure all replicas

located in a secondary data center to be candidates for

election only if the primary data center fails. Once the new

primary replica set member has been elected, remaining

secondary members are automatically start replicating from

the new primary. If the original primary comes back on-line,

it will recognize that it is no longer the primary and will

reconfigure itself to become a secondary replica set

member.

2. Enhanced (v1) replication protocol – earlier versions are referred to as v0

14

http://docs.mongodb.com/manual/core/journaling/
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/retryable-writes/index.html
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.protocolVersion

The number of replica nodes in a MongoDB replica set is

configurable, and a larger number of replica nodes

provides increased protection against database downtime

in case of multiple machine failures. While a node is down

MongoDB will continue to function. The DBA or sysadmin

should work to recover or replace the failed replica in order

to mitigate the temporarily reduced resilience of the

system.

Replica sets also provide operational flexibility by providing

sysadmins with an option for performing hardware and

software maintenance without taking down the entire

system. Using a rolling upgrade, secondary members of the

replica set can be upgraded in turn, before the

administrator demotes the master to complete the

upgrade. This process is fully automated when using Ops

Manager or Cloud Manager – discussed later in this guide.

Consider the following factors when developing the

architecture for your replica set:

• Ensure that the members of the replica set will always

be able to elect a primary. A strict majority of voting

cluster members must be available and in contact with

each other to elect a new primary. Therefore you should

run an odd number of members. There should be at

least three replicas with copies of the data in a replica

set.

• Best practice is to have a minimum of 3 data centers so

that a majority is maintained after the loss of any single

site. If only 2 sites are possible then know where the

majority of members will be in the case of any network

partitions and attempt to ensure that the replica set can

elect a primary from the members located in that

primary data center.

• Consider including a hidden member in the replica set.

Hidden replica set members can never become a

primary and are typically used for backups, or to run

applications such as analytics and reporting that require

isolation from regular operational workloads. Delayed

replica set members can also be deployed that apply

changes on a fixed time delay to provide recovery from

unintentional operations, such as accidentally dropping

a collection.

More information on replica sets can be found on the

Replication MongoDB documentation page.

Multi-Data Center Replication

MongoDB replica sets allow for flexible deployment

designs both within and across data centers that account

for failure at the server, rack, and regional levels. In the

case of a natural or human-induced disaster, the failure of

a single data center can be accommodated with no

downtime when MongoDB replica sets are deployed

across data centers. Multi-data center replication is also

fully supported as a managed service in MongoDB Atlas.

Write Guarantees

MongoDB allows administrators to specify the level of

persistence guarantee when issuing writes to the

database, which is called the write concern. The following

options can be configured on a per connection, per

database, per collection, or even per operation basis. The

options are as follows:

• WWrite Acrite Acknowledged:knowledged: This is the default write concern.

The mongod will confirm the execution of the write

operation, allowing the client to catch network, duplicate

key, Document Validation, and other exceptions.

• Journal AcJournal Acknowledged:knowledged: The mongod will confirm the

write operation only after it has flushed the operation to

the journal on the primary. This confirms that the write

operation can survive a mongod crash and ensures that

the write operation is durable on disk.

• ReplicReplica Aca Acknowledged:knowledged: It is also possible to wait for

acknowledgment of writes to other replica set members.

MongoDB supports writing to a specific number of

replicas. This also ensures that the write is written to the

journal on the secondaries. Because replicas can be

deployed across racks within data centers and across

multiple data centers, ensuring writes propagate to

additional replicas can provide extremely robust

durability.

• Majority:Majority: This write concern waits for the write to be

applied to a majority of replica set members. This also

ensures that the write is recorded in the journal on

these replicas – including on the primary.

• DatData Center Aa Center Awarwareness:eness: Using tag sets, sophisticated

policies can be created to ensure data is written to

specific combinations of replicas prior to

15

https://docs.mongodb.com/manual/core/replica-set-hidden-member/
https://docs.mongodb.com/manual/core/replica-set-delayed-member/
https://docs.mongodb.com/manual/core/replica-set-delayed-member/
http://docs.mongodb.com/manual/replication/
http://docs.mongodb.com/manual/core/replica-set-write-concern/

acknowledgment of success. For example, you can

create a policy that requires writes to be written to at

least three data centers on two continents, or two

servers across two racks in a specific data center. For

more information see the MongoDB Documentation on

Data Center Awareness.

Read Preferences

Reading from the primary replica is the default

configuration as it guarantees consistency. If higher read

throughput is required, it is recommended to take

advantage of MongoDB's auto-sharding to distribute read

operations across multiple primary members. With

MongoDB's read concern levels, discussed below,

administrators can tune MongoDB read consistency across

members of the replica set.

Distributing read operations across replica set members

can improve read scalability of the MongoDB deployment.

For example, analytics and Business Intelligence (BI)

applications can execute queries against a secondary

replica, thereby reducing overhead on the primary and

enabling MongoDB to serve operational and analytical

workloads from a single deployment. Another configuration

option directs reads to the replica nearest to the user

based on ping distance, which can significantly decrease

the latency of read operations in globally distributed

applications at the expense of potentially reading slightly

stale data.

A very useful option is primaryPreferred, which issues

reads to a secondary replica only if the primary is

unavailable. This configuration allows for the continuous

availability of reads during the short failover process.

For more on the subject of configurable reads, see the

MongoDB Documentation page on replica set Read

Preference.

Read Concerns

To ensure isolation and consistency, the readConcern can

be set to majority to indicate that data should only be

returned to the application if it has been replicated to a

majority of the nodes in the replica set, and so cannot be

rolled back in the event of a failure.

MongoDB offers a readConcern level of “Linearizable”. The

linearizable read concern ensures that a node is still the

primary member of the replica set at the time of the read,

and that the data it returns will not be rolled back if another

node is subsequently elected as the new primary member.

Configuring this read concern level can have a significant

impact on latency, therefore a maxTimeMS value should be

supplied in order to timeout long running operations.

Causal Consistency

Causal consistency – guarantees that every read operation

within a client session will always see the previous write

operation, regardless of which replica is serving the

request. By enforcing strict, causal ordering of operations

within a session, causal consistency ensures every read is

always logically consistent, enabling monotonic reads from

a distributed system – guarantees that cannot be met by

most multi-node databases. Causal consistency allows

developers to maintain the benefits of strict data

consistency enforced by legacy single node relational

databases, while modernizing their infrastructure to take

advantage of the scalability and availability benefits of

modern distributed data platforms.

Scaling a MongoDB System

Horizontal Scaling with Automatic
Sharding

To meet the needs of apps with large data sets and high

throughput requirements, MongoDB provides horizontal

scale-out for databases on low-cost, commodity hardware

or cloud infrastructure using a technique called sharding.

Sharding automatically partitions and distributes data

across multiple physical instances called shards. Each

shard is backed by a replica set to provide always-on

availability and workload isolation. Sharding allows

developers to seamlessly scale the database as their apps

grow beyond the hardware limits of a single server, and it

does this without adding complexity to the application. To

respond to workload demand, nodes can be added or

removed from the cluster in real time, and MongoDB will

automatically rebalance the data accordingly, without

manual intervention.

16

http://docs.mongodb.com/manual/data-center-awareness/
https://docs.mongodb.com/manual/reference/read-preference/#nearest
http://docs.mongodb.com/manual/core/read-preference/
http://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/manual/reference/readConcern/
https://docs.mongodb.com/manual/reference/readConcern/
https://docs.mongodb.com/manual/reference/method/cursor.maxTimeMS/
https://docs.mongodb.com/manual/reference/method/Mongo.setCausalConsistency/
https://docs.mongodb.org/manual/core/sharding-introduction/

Sharding is transparent to applications; whether there is

one or a thousand shards, the application code for querying

MongoDB remains the same. Applications issue queries to

a query router that dispatches the query to the appropriate

shards. For key-value queries that are based on the shard

key, the query router will dispatch the query to the shard

that manages the document with the requested key. When

using range-based sharding, queries that specify ranges on

the shard key are only dispatched to shards that contain

documents with values within the range. For queries that

don’t use the shard key, the query router will broadcast the

query to all shards, aggregating and sorting the results as

appropriate. Multiple query routers can be used within a

MongoDB cluster, with the appropriate number governed

by the performance and availability requirements of the

application.

MongoDB exposed multiple sharding policies. As a result,

data can be distributed according to query patterns or data

placement requirements, giving developers much higher

scalability across a diverse et of workloads:

• Ranged SharRanged Shardingding. Documents are partitioned across

shards according to the shard key value. Documents

with shard key values close to one another are likely to

be co-located on the same shard. This approach is well

suited for applications that need to optimize range

based queries, such as co-locating data for all

customers in a specific region on a specific shard.

• Hashed SharHashed Shardingding. Documents are distributed

according to an MD5 hash of the shard key value. This

approach guarantees a uniform distribution of writes

across shards, which is often optimal for ingesting

streams of time-series and event data.

• Zoned SharZoned Shardingding. Provides the ability for developers to

define specific rules governing data placement in a

sharded cluster. Zones are discussed in more detail in

the following Data Locality section of the guide.

Thousands of organizations use MongoDB to build

high-performance systems at scale. You can read more

about them on the MongoDB scaling page.

Users should consider deploying a sharded cluster in the

following situations:

• RAM LimitRAM Limitation:ation: The size of the system's active

working set plus indexes is expected to exceed the

capacity of the maximum amount of RAM in the system.

• Disk IDisk I/O Limit/O Limitation:ation: The system will have a large

amount of write activity, and the operating system will

not be able to write data fast enough to meet demand,

or I/O bandwidth will limit how fast the writes can be

flushed to disk.

• Storage LimitStorage Limitation:ation: The data set will grow to exceed

the storage capacity of a single node in the system.

• DatData placement ra placement requirequirements:ements: The data set needs to

be assigned to a specific data center to support low

latency local reads and writes, or for data sovereignty to

meet privacy regulations such as the GDPR.

Alternatively, data placement might be required to

create multi-temperature storage infrastructures that

separate hot and cold data onto specific volumes.

MongoDB gives you this flexibility.

Applications that meet these criteria, or that are likely to do

so in the future, should be designed for sharding in

advance rather than waiting until they have consumed

available capacity. Applications that will eventually benefit

from sharding should consider which collections they will

want to shard and the corresponding shard keys when

designing their data models. If a system has already

reached or exceeded its capacity, it will be challenging to

deploy sharding without impacting the application's

performance.

Sharding Best Practices

Users who choose to shard should consider the following

best practices:

Select a good sharSelect a good shard keyd key.. When selecting fields to use as

a shard key, there are at least three key criteria to consider:

1. Cardinality: Data partitioning is managed in 64 MB

chunks by default. Low cardinality (e.g., a user's home

country) will tend to group documents together on a

small number of shards, which in turn will require

frequent rebalancing of the chunks and a single country

is likely to exceed the 64 MB chunk size. Instead, a

shard key should exhibit high cardinality.

17

https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
http://www.mongodb.com/mongodb-scale

2. Insert Scaling: Writes should be evenly distributed

across all shards based on the shard key. If the shard

key is monotonically increasing, for example, all inserts

will go to the same shard even if they exhibit high

cardinality, thereby creating an insert hotspot. Instead,

the key should be evenly distributed.

3. Query Isolation: Queries should be targeted to a specific

shard to maximize scalability. If queries cannot be

isolated to a specific shard, all shards will be queried in

a pattern called scatter/gather, which is less efficient

than querying a single shard.

For more on selecting a shard key, see Considerations for

Selecting Shard Keys.

Add cAdd capacity beforapacity before it is needed.e it is needed. Cluster maintenance

is lower risk and more simple to manage if capacity is

added before the system is over utilized.

Run thrRun three or moree or more configuration servers to pre configuration servers to provideovide

rredundancyedundancy.. Production deployments must use three or

more config servers. Config servers should be deployed in

a topology that is robust and resilient to a variety of

failures.

Use rUse repliceplica sets.a sets. Sharding and replica sets are absolutely

compatible. Replica sets should be used in all deployments,

and sharding should be used when appropriate. Sharding

allows a database to make use of multiple servers for data

capacity and system throughput. Replica sets maintain

redundant copies of the data across servers, server racks,

and even data centers.

Use multipleUse multiple mongos instinstances.ances.

Apply best practices for bulk inserts.Apply best practices for bulk inserts. Pre-split data into

multiple chunks so that no balancing is required during the

insert process. Alternately, disable the balancer during bulk

loads. Also, use multiple mongos instances to load in

parallel for greater throughput. For more information see

Create Chunks in a Sharded Cluster in the MongoDB

Documentation.

Dynamic Data Balancing

As data is loaded into MongoDB, the system may need to

dynamically rebalance chunks across shards in the cluster

using a process called the balancer. It is possible to disable

the balancer or to configure when balancing is performed

to further minimize the impact on performance.

Geographic Distribution

Shards can be configured such that specific ranges of

shard key values are mapped to a physical shard location.

Zoned sharding allows a MongoDB administrator to control

the physical location of documents in a MongoDB cluster,

even when the deployment spans multiple data centers in

different regions.

It is possible to combine the features of replica sets, zoned

sharding, read preferences, and write concerns in order to

provide a deployment that is geographically distributed,

enabling users to read and write to their local data centers.

An administrator can restrict sharded collections to a

specific set of shards, effectively federating those shards

for different users. For example, one can tag all USA data

and assign it to shards located in the United States.

To learn more, download the MongoDB Multi-Datacenter

Deployments Guide.

Managing MongoDB:
Provisioning, Monitoring and
Disaster Recovery

If you are running your apps and databases in the public

cloud, MongoDB offers the fully managed, on-demand and

elastic MongoDB Atlas service. Atlas enables customers to

deploy, operate, and scale MongoDB databases on AWS,

Azure, or GCP in just a few clicks or programmatic API

calls. MongoDB Atlas is available through a pay-as-you-go

model and billed on an hourly basis. A fuller description of

MongoDB Atlas is included later in this guide.

If you are running MongoDB yourself, Ops Manager is the

simplest way to run the database on your own

infrastructure, making it easy for operations teams to

deploy, monitor, backup, and scale MongoDB. Many of the

capabilities of Ops Manager are also available in the

MongoDB Cloud Manager service hosted in the cloud.

Today, Cloud Manager supports thousands of deployments,

including systems from one to hundreds of servers.

18

http://docs.mongodb.com/manual/tutorial/choose-a-shard-key/
http://docs.mongodb.com/manual/tutorial/choose-a-shard-key/
http://docs.mongodb.com/manual/tutorial/create-chunks-in-sharded-cluster/
https://docs.mongodb.com/manual/core/sharding-balancing/#sharding-balancing
https://www.mongodb.com/collateral/mongodb-multi-data-center-deployments
https://www.mongodb.com/collateral/mongodb-multi-data-center-deployments
https://www.mongodb.com/cloud/atlas

Organizations who run their deployments with MongoDB

Enterprise Advanced can choose between Ops Manager

and Cloud Manager.

Ops Manager and Cloud Manager incorporate best

practices to help keep managed databases healthy and

optimized. They ensure operational continuity by converting

complex manual tasks into reliable, automated procedures

with the click of a button or via an API call:

• DeployDeploy.. Any topology, at any scale

• Upgrade.Upgrade. In minutes, with no downtime

• ScScale.ale. Add capacity, without taking the application

offline.

• PPoint-in-time, Scoint-in-time, Scheduled Bacheduled Backups.kups. Restore

complete running clusters to any point in time with just

a few clicks, because disasters aren't predictable.

• Queryable BacQueryable Backups.kups. Allow partial restores of selected

data, and the ability to query a backup file in-place,

without having to restore it.

• PPerformance Alerts.erformance Alerts. Monitor 100+ system metrics

and get custom alerts before the system degrades.

• Roll Out Indexes.Roll Out Indexes. Avoid impact to the application by

introducing new indexes node by node – starting with

the secondaries and then the demoted primary.

• Manage Zones.Manage Zones. Configure sharding Zones to mandate

what data is stored where.

• DatData Explora Explorerer.. Examine the database’s schema by

running queries to review document structure, viewing

collection metadata, and inspecting index usage

statistics

The Operations Rapid Start service gives your operations

and devops teams the skills and tools to run and manage

MongoDB with all the best practices accumulated over

many years working with some of the world's largest

companies. This engagement offers introductory

administrator training and custom consulting to help you

set up and use either MongoDB Ops Manager or

MongoDB Cloud Manager.

Deployments and Upgrades

Ops Manager coordinates critical operational tasks across

the servers in a MongoDB system. It communicates with

the infrastructure through agents installed on each server.

The servers can reside in the public cloud or a private data

center. Ops Manager reliably orchestrates the tasks that

administrators have traditionally performed manually –

deploying a new cluster, upgrades, creating point in time

backups, rolling out new indexes, and many other

operational tasks.

Ops Manager is designed to adapt to problems as they

arise by continuously assessing state and making

adjustments as needed. Here’s how:

• Ops Manager agents are installed on servers (where

MongoDB will be deployed), either through

configuration tools such as Ansible, Chef or Puppet, or

by an administrator.

• The administrator creates a new design goal for the

system, either as a modification to an existing

deployment (e.g., upgrade, oplog resize, new shard), or

as a new system.

• The agents periodically check in with the Ops Manager

central server and receive the new design instructions.

• Agents create and follow a plan for implementing the

design. Using a sophisticated rules engine, agents

continuously adjust their individual plans as conditions

change. In the face of many failure scenarios – such as

server failures and network partitions – agents will

revise their plans to reach a safe state.

• Minutes later, the system is deployed – safely and

reliably.

Beyond deploying new databases, Ops Manager can

"attach to" or import existing MongoDB deployments and

take over their control.

In addition to initial deployment, Ops Manager make it

possible to dynamically resize capacity by adding shards

and replica set members. Other maintenance tasks such as

upgrading MongoDB or resizing the oplog can be reduced

from dozens or hundreds of manual steps to the click of a

button, all with zero downtime.

A common DBA task is to roll out new indexes in

production systems. In order to minimize the impact to the

live system, the best practice is to perform a rolling index

build – starting with each of the secondaries and finally

applying changes to the original primary, after swapping its

19

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/products/consulting

role with one of the secondaries. While this rolling process

can be performed manually, Ops Manager and Cloud

Manager can automate the process across MongoDB

replica sets, reducing operational overhead and the risk of

failovers caused by incorrectly sequencing management

processes.

Administrators can use the Ops Manager interface directly,

or invoke the Ops Manager RESTful API from existing

enterprise tools, including popular monitoring and

orchestration frameworks. Specific integration is provided

with the leading Application Performance Management

(APM) tools. Details are included later in this section of the

guide.

Cloud Native Integration.Cloud Native Integration. Ops Manager can be

integrated with Pivotal Cloud Foundry, Red Hat OpenShift,

and Kubernetes. With Ops Manager, you can rapidly deploy

MongoDB Enterprise powered applications by abstracting

away the complexities of managing, scaling and securing

hybrid clouds. Ops Manager coordinates orchestration

between your cloud native platform, which handles the

underlying infrastructure, while Ops Manager handles the

MongoDB instances, automatically configured and

managed with operational best practices.

With this integration, you can consistently and effortlessly

run workloads wherever they need to be, standing up the

same database configuration in different environments, all

controlled from a single pane of glass.

Ops Manager features such as server pooling make it

easier to build a database as a service within a private

cloud environment. Ops Manager will maintain a pool of

globally provisioned servers that have agents already

installed. When users want to create a new MongoDB

deployment, they can request servers from this pool to host

the MongoDB cluster. Administrators can even associate

certain properties with the servers in the pool and expose

server properties as selectable options when a user

initiates a request for new instances.

Monitoring & Capacity Planning

System performance and capacity planning are two

important topics that should be addressed as part of any

MongoDB deployment. Part of your planning should involve

establishing baselines on data volume, system load,

performance, and system capacity utilization. These

baselines should reflect the workloads you expect the

system to perform in production, and they should be

revisited periodically as the number of users, application

features, performance SLA, or other factors change.

Baselines will help you understand when the system is

operating as designed, and when issues begin to emerge

that may affect the quality of the user experience or other

factors critical to the system. It is important to monitor your

MongoDB system for unusual behavior so that actions can

be taken to address issues proactively. The following

represents the most popular tools for monitoring

MongoDB, and also describes different aspects of the

system that should be monitored.

Monitoring with Ops Manager and Cloud
Manager

Featuring charts, custom dashboards, and automated

alerting, Ops Manager tracks 100+ key database and

systems health metrics including operations counters,

memory and CPU utilization, replication status, open

connections, queues, and any node status. Ops Manager

allows telemetry data to be collected every 10 seconds.

FigurFigure 4:e 4: Ops Manager: simple, intuitive, and powerful.
Deploy and upgrade entire clusters with a single click.

The metrics are securely reported to Ops Manager and

Cloud Manager where they are processed, aggregated,

alerted and visualized in a browser, letting administrators

easily determine the health of MongoDB in real-time. Views

can be based on explicit permissions, so project team

visibility can be restricted to their own applications, while

20

systems administrators can monitor all the MongoDB

deployments in the organization.

Historic performance can be reviewed in order to create

operational baselines and to support capacity planning.

Integration with existing monitoring tools is also

straightforward via the Ops Manager RESTful API, making

the deep insights from Ops Manager part of a consolidated

view across your operations.

Ops Manager allows administrators to set custom alerts

when key metrics are out of range. Alerts can be

configured for a range of parameters affecting individual

hosts, replica sets, agents, and backup. Alerts can be sent

via SMS, email, webhooks, Flowdock, HipChat, and Slack or

integrated into existing incident management systems such

as PagerDuty to proactively warn of potential issues,

before they escalate to costly outages.

If using Cloud Manager, access to monitoring data can also

be shared with MongoDB support engineers, providing fast

issue resolution by eliminating the need to ship logs

between different teams.

FigurFigure 5:e 5: Ops Manager provides real time & historic
visibility into the MongoDB deployment.

Free MongoDB Monitoring Cloud Service

With the 4.0 release, the MongoDB database can natively

push monitoring metadata directly to the MongoDB

Monitoring Cloud. Once enabled, you will be shown a

unique URL that you can navigate to in a web browser, and

instantly see monitoring metrics and topology information

collected for your environment. You can share the URL to

provide visibility to anyone on your team.

The free monitoring service is available to all MongoDB

users, without needing to install an agent, navigate a

paywall, or complete a registration form. You will be able to

see the metrics and topology about your environment from

the moment free monitoring is enabled. You can enable

free monitoring easily using the MongoDB shell, MongoDB

Compass, or by starting the mongod process with the new

'db.enableFreeMonitoring()' command line option, and you

can opt out at any time.

With the Monitoring Cloud Service, the collected metrics

enable you to quickly assess database health and optimize

performance, all from the convenience of a powerful

browser-based GUI. Monitoring features include

• Environment information: Topology (standalone, replica

sets including primary and secondary nodes). MongoDB

version.

• Charts with 24 hours of data for the following metrics,

updated every minute: Database operations per second

(averaged to the minute), including commands, queries,

updates, deletes, getMores, inserts and replication

operations for replica set secondaries.

• Operation execution time.

• Queues.

• Replication lag.

• Network I/O.

• Memory (resident and virtual).

• Hardware: Process CPU, disk % utilization, Disk % free

space

Learn more at the MongoDB Cloud page.

mongotop

mongotop is a utility that ships with MongoDB. It tracks

and reports the current read and write activity of a

MongoDB cluster. mongotop provides collection-level

statistics.

mongostat

mongostat is a utility that ships with MongoDB. It shows

real-time statistics about all servers in your MongoDB

system. mongostat provides a comprehensive overview of

21

https://www.mongodb.com/cloud
https://docs.mongodb.com/manual/reference/program/mongotop/
https://docs.mongodb.com/manual/reference/program/mongotop/
https://docs.mongodb.com/manual/reference/program/mongostat/
https://docs.mongodb.com/manual/reference/program/mongostat/

all operations, including counts of updates, inserts, page

faults, index misses, and many other important measures of

the system health. mongostat is similar to the Linux tool

vmstat.

Other Popular Tools

There are a number of popular open-source monitoring

tools for which MongoDB plugins are available. If

MongoDB is configured with the WiredTiger storage

engine, ensure the tool is using a WiredTiger-compatible

driver:

• Nagios

• Ganglia

• Cacti

• Scout

• Zabbix

• Datadog

Linux Utilities

Other common utilities that can be used to monitor

different aspects of a MongoDB system:

• iostat: Provides usage statistics for the storage

subsystem

• vmstat: Provides usage statistics for virtual memory

• netstat: Provides usage statistics for the network

• sar: Captures a variety of system statistics periodically

and stores them for analysis

Windows Utilities

Performance Monitor, a Microsoft Management Console

snap-in, is a useful tool for measuring a variety of stats in a

Windows environment.

Things to Monitor

Ops Manager and Cloud Manager can be used to monitor

database-specific metrics, including page faults, ops

counters, queues, connections and replica set status. Alerts

can be configured against each monitored metric to

proactively warn administrators of potential issues before

users experience a problem.

Application Logs And Database Logs

Application and database logs should be monitored for

errors and other system information. It is important to

correlate your application and database logs in order to

determine whether activity in the application is ultimately

responsible for other issues in the system. For example, a

spike in user writes may increase the volume of writes to

MongoDB, which in turn may overwhelm the underlying

storage system. Without the correlation of application and

database logs, it might take more time than necessary to

establish that the application is responsible for the

increase in writes rather than some process running in

MongoDB.

In the event of errors, exceptions or unexpected behavior,

the logs should be saved and uploaded to MongoDB when

opening a support case. Logs for mongod processes

running on primary and secondary replica set members, as

well as mongos and config processes will enable the

support team to more quickly root cause any issues.

Page Faults

When a working set ceases to fit in memory, or other

operations have moved working set data out of memory,

the volume of page faults may spike in your MongoDB

system. Page faults are part of the normal operation of a

MongoDB system, but the volume of page faults should be

monitored in order to determine if the working set is

growing to the level that it no longer fits in available

memory and if alternatives such as more memory or

sharding across multiple servers is appropriate. In most

cases, the underlying issue for problems in a MongoDB

system tends to be page faults.

Disk

Beyond memory, disk I/O is also a key performance

consideration for a MongoDB system because writes are

journaled and regularly flushed to disk. Under heavy write

load the underlying disk subsystem may become

overwhelmed, or other processes could be contending with

MongoDB, or the RAID configuration may be inadequate

22

for the volume of writes. Other potential issues could be

the root cause, but the symptom is typically visible through

iostat as showing high disk utilization and high queuing

for writes.

CPU

A variety of issues could trigger high CPU utilization. This

may be normal under most circumstances, but if high CPU

utilization is observed without other issues such as disk

saturation or pagefaults, there may be an unusual issue

in the system. For example, a MapReduce job with an

infinite loop, or a query that sorts and filters a large number

of documents from the working set without good index

coverage, might cause a spike in CPU without triggering

issues in the disk system or pagefaults.

Connections

MongoDB drivers implement connection pooling to

facilitate efficient use of resources. Each connection

consumes 1MB of RAM, so be careful to monitor the total

number of connections so they do not overwhelm RAM

and reduce the available memory for the working set. This

typically happens when client applications do not properly

close their connections, or with Java in particular, that relies

on garbage collection to close the connections.

Op Counters

The utilization baselines for your application will help you

determine a normal count of operations. If these counts

start to substantially deviate from your baselines it may be

an indicator that something has changed in the application,

or that a malicious attack is underway.

Queues

If MongoDB is unable to complete all requests in a timely

fashion, requests will begin to queue up. A healthy

deployment will exhibit very low queues. If metrics start to

deviate from baseline performance, caused by a

long-running query for example, requests from applications

will start to queue. The queue is therefore a good first

place to look to determine if there are issues that will affect

user experience.

System Configuration

It is not uncommon to make changes to hardware and

software in the course of a MongoDB deployment. For

example, a disk subsystem may be replaced to provide

better performance or increased capacity. When

components are changed it is important to ensure their

configurations are appropriate for the deployment.

MongoDB is very sensitive to the performance of the

operating system and underlying hardware, and in some

cases the default values for system configurations are not

ideal. For example, the default readahead for the file

system could be several MB whereas MongoDB is

optimized for readahead values closer to 32 KB. If the

new storage system is installed without making the change

to the readahead from the default to the appropriate

setting, the application's performance is likely to degrade

substantially. Remember to review the Production Notes for

latest best practices.

Shard Balancing

One of the goals of sharding is to uniformly distribute data

across multiple servers. If the utilization of server resources

is not approximately equal across servers there may be an

underlying issue that is problematic for the deployment. For

example, a poorly selected shard key can result in uneven

data distribution. In this case, most if not all of the queries

will be directed to the single mongod that is managing the

data. Furthermore, MongoDB may be attempting to

redistribute the documents to achieve a more ideal balance

across the servers. While redistribution will eventually result

in a more desirable distribution of documents, there is

substantial work associated with rebalancing the data and

this activity itself may interfere with achieving the desired

performance SLA. By running db.currentOp() you will

be able to determine what work is currently being

performed by the cluster, including rebalancing of

documents across the shards.

If in the course of a deployment it is determined that a new

shard key should be used, it will be necessary to reload the

data with a new shard key because designation and values

of the shard keys are immutable. To support the use of a

new shard key, it is possible to write a script that reads

each document, updates the shard key, and writes it back

to the database.

23

https://docs.mongodb.com/manual/administration/production-notes/

Replication Lag

Replication lag is the amount of time it takes a write

operation on the primary replica set member to replicate to

a secondary member. A small amount of delay is normal,

but as replication lag grows, issues may arise. Typical

causes of replication lag include network latency or

connectivity issues, and disk latencies such as the

throughput of the secondaries being inferior to that of the

primary.

Config Server Availability

In sharded environments it is required to run three or more

config servers. Config servers are critical to the system for

understanding the location of documents across shards.

The database will remain operational in this case, but the

balancer will be unable to move chunks and other

maintenance activities will be blocked until all three config

servers are available. Config servers are, by default, be

deployed as a MongoDB replica set.

Disaster Recovery: Backup & Recovery

A backup and recovery strategy is necessary to protect

your mission-critical data against catastrophic failure, such

as a fire or flood in a data center, or human error such as

code errors or accidentally dropping collections. With a

backup and recovery strategy in place, administrators can

restore business operations without data loss, and the

organization can meet regulatory and compliance

requirements. Taking regular backups offers other

advantages, as well. The backups can be used to seed new

environments for development, staging, or QA without

impacting production systems.

Ops Manager and Cloud Manager backups are maintained

continuously, just a few seconds behind the operational

system. If the MongoDB cluster experiences a failure, the

most recent backup is only moments behind, minimizing

exposure to data loss. MongoDB Atlas, Ops Manager, and

Cloud Manager are the only MongoDB solutions that offer

point-in-time backup of replica sets and cluster-wide

snapshots of sharded clusters. You can restore to precisely

the moment you need, quickly and safely. Ops teams can

automate their database restores reliably and safely using

Ops Manager and Cloud Manager. Complete development,

test, and recovery clusters can be built in a few simple

clicks. Operations teams can configure backups against

specific collections only, rather than the entire database,

speeding up backups and reducing the requisite storage

space.

Queryable Backups allow partial restores of selected data,

and the ability to query a backup file in-place, without

having to restore it.

Ops Manager supports cross-project restores, allowing

users to perform restores into a different Ops Manager

Project than the backup snapshot source. This allows

DevOps teams to easily execute tasks such as creating

multiple staging or test environments that match recent

production data, while configured with different user

access privileges or running in different regions.

Because Ops Manager only reads the oplog, the ongoing

performance impact is minimal – similar to that of adding

an additional replica to a replica set.

By using MongoDB Enterprise Advanced you can deploy

Ops Manager to control backups in your local data center,

or use the Cloud Manager service that offers a fully

managed backup solution with a pay-as-you-go model.

Dedicated MongoDB engineers monitor user backups on a

24x365 basis, alerting operations teams if problems arise.

Ops Manager and Cloud Manager are not the only

mechanisms for backing up MongoDB. Other options

include:

• File system copies

• The mongodump tool packaged with MongoDB

File System Backups

File system backups, such as that provided by Linux LVM,

quickly and efficiently create a consistent snapshot of the

file system that can be copied for backup and restore

purposes. For databases with a single replica set it is

possible to stop operations temporarily so that a consistent

snapshot can be created by issuing the db.fsyncLock()

command. This will flush all pending writes to disk and lock

the entire mongod instance to prevent additional writes

until the lock is released with db.fsyncUnlock().

24

For more on how to use file system snapshots to create a

backup of MongoDB, please see Backup and Restore with

Filesystem Snapshots in the MongoDB Documentation.

Only MongoDB Atlas, Ops Manager, and Cloud Manager

provide an automated method for taking a consistent

backup across all shards.

For more on backup and restore in sharded environments,

see the MongoDB Documentation page on Backup and

Restore Sharded Clusters and the tutorial on Backup a

Sharded Cluster with Filesystem Snapshots.

mongodump

mongodump is a tool bundled with MongoDB that performs

a live backup of the data in MongoDB. mongodump may be

used to dump an entire database, collection, or result of a

query. mongodump can produce a dump of the data that

reflects a single moment in time by dumping the oplog

entries created during the dump and then replaying it

during mongorestore, a tool that imports content from

BSON database dumps produced by mongodump.

Integrating MongoDB with External
Monitoring Solutions

The Ops Manager API provides integration with external

management frameworks through programmatic access to

automation features and monitoring data.

In addition to Ops Manager, MongoDB Enterprise

Advanced can report system information to SNMP traps,

supporting centralized data collection and aggregation via

external monitoring solutions. Review the documentation to

learn more about SNMP integration.

APM Integration

Many operations teams use Application Performance

Monitoring (APM) platforms to gain global oversight of

their complete IT infrastructure from a single management

UI. Issues that risk affecting customer experience can be

quickly identified and isolated to specific components –

whether attributable to devices, hardware infrastructure,

networks, APIs, application code, databases, and more.

FigurFigure 6:e 6: MongoDB integrated into a single view of

application performance

The MongoDB drivers include an API that exposes query

performance metrics to APM tools. Administrators can

monitor time spent on each operation, and identify slow

running queries that require further analysis and

optimization.

In addition, Ops and Cloud Manager now provide packaged

integration with the New Relic platform. Key metrics from

Ops Manager are accessible to the APM for visualization,

enabling MongoDB health to be monitored and correlated

with the rest of the application estate.

As shown in Figure 6, summary metrics are presented

within the APM’s UI. Administrators can also run New Relic

Insights for analytics against monitoring data to generate

dashboards that provide real-time tracking of Key

Performance Indicators (KPIs).

Security

As with all software, MongoDB administrators must

consider security and risk exposure for a MongoDB

deployment. There are no magic solutions for risk

mitigation, and maintaining a secure MongoDB deployment

is an ongoing process.

Defense in Depth

A Defense in Depth approach is recommended for

securing MongoDB deployments, and it addresses a

number of different methods for managing risk and

reducing risk exposure.

25

http://docs.mongodb.com/manual/tutorial/backup-databases-with-filesystem-snapshots/
http://docs.mongodb.com/manual/tutorial/backup-databases-with-filesystem-snapshots/
http://docs.mongodb.com/manual/administration/backup-sharded-clusters/
http://docs.mongodb.com/manual/administration/backup-sharded-clusters/
http://docs.mongodb.com/manual/tutorial/backup-sharded-cluster-with-filesystem-snapshots/
http://docs.mongodb.com/manual/tutorial/backup-sharded-cluster-with-filesystem-snapshots/
http://docs.mongodb.com/manual/reference/program/<code>mongodump</code>/
http://docs.mongodb.com/manual/reference/program/<code>mongodump</code>/
http://docs.mongodb.com/manual/tutorial/monitor-with-snmp/

The intention of a Defense in Depth approach is to layer

your environment to ensure there are no exploitable single

points of failure that could allow an intruder or untrusted

party to access the data stored in the MongoDB database.

The most effective way to reduce the risk of exploitation is

to run MongoDB in a trusted environment, to limit access,

to follow a system of least privileges, to institute a secure

development lifecycle, and to follow deployment best

practices.

MongoDB Enterprise Advanced features extensive

capabilities to defend, detect and control access to

MongoDB, offering among the most complete security

controls of any modern database:

• Access ContrAccess Control.ol. Control access to sensitive data using

industry standard mechanisms for authentication and

authorization to the database, collection, and down to

the level of individual fields within a document.

• Auditing.Auditing. Ensure regulatory and internal compliance.

• Encryption.Encryption. Protect data in motion over the network

and at rest in persistent storage.

• Administrative ContrAdministrative Controls.ols. Identify potential exploits

faster and reduce their impact.

• Network PrNetwork Protection.otection. Refer to the earlier Networking

session for details.

Review the MongoDB Security Reference Architecture to

learn more about each of the security features discussed

below.

Authentication

Authentication can be managed from within the database

itself or via MongoDB Enterprise Advanced integration with

external security mechanisms including LDAP, Windows

Active Directory, and Kerberos.

Authorization

MongoDB allows administrators to define permissions for a

user or application, and what data it can access when

querying the database. MongoDB provides the ability to

configure granular role-based access control, making it

possible to realize a separation of duties between different

entities accessing and managing the database.

MongoDB also extends existing support for authenticating

users via LDAP to now include LDAP authorization. This

enables existing user privileges stored in the LDAP server

to be mapped to MongoDB roles, without users having to

be recreated in MongoDB itself.

Auditing

MongoDB Enterprise Advanced enables security

administrators to construct and filter audit trails for any

operation against MongoDB, whether DML, DCL or DDL.

For example, it is possible to log and audit the identities of

users who retrieved specific documents, and any changes

made to the database during their session. The audit log

can be written to multiple destinations in a variety of

formats including to the console and syslog (in JSON

format), and to a file (JSON or BSON), which can then be

loaded to MongoDB and analyzed to identify relevant

events

Encryption

MongoDB data can be encrypted on the network and on

disk.

Support for TLS allows clients to connect to MongoDB

over an encrypted channel. MongoDB supports FIPS

140-2 encryption when run in FIPS Mode with a FIPS

validated Cryptographic module.

Data at rest can be protected using:

• The MongoDB Encrypted storage engine

• Certified database encryption solutions from MongoDB

partners such as IBM and Vormetric

• Logic within the application itself

With the Encrypted storage engine, protection of data

at-rest now becomes an integral feature of the database.

By natively encrypting database files on disk,

administrators eliminate both the management and

performance overhead of external encryption mechanisms.

This new storage engine provides an additional level of

defense, allowing only those staff with the appropriate

database credentials access to encrypted data.

26

https://www.mongodb.com/collateral/mongodb-security-architecture
https://docs.mongodb.com/manual/core/security-encryption-at-rest/#encrypted-storage-engine

Using the Encrypted storage engine, the raw database

“plain text” content is encrypted using an algorithm that

takes a random encryption key as input and generates

"ciphertext" that can only be read if decrypted with the

decryption key. The process is entirely transparent to the

application. MongoDB supports a variety of encryption

algorithms – the default is AES-256 (256 bit encryption) in

CBC mode. AES-256 in GCM mode is also supported.

Encryption can be configured to meet FIPS 140-2

requirements.

The storage engine encrypts each database with a

separate key. The key-wrapping scheme in MongoDB

wraps all of the individual internal database keys with one

external master key for each server. The Encrypted storage

engine supports two key management options – in both

cases, the only key being managed outside of MongoDB is

the master key:

• Local key management via a keyfile

• Integration with a third party key management appliance

via the KMIP protocol (recommended)

Read-Only, Redacted Views

DBAs can define non-materialized views that expose only a

subset of data from an underlying collection, i.e. a view that

filters out specific fields. DBAs can define a view of a

collection that's generated from an aggregation over

another collection(s) or view. Permissions granted against

the view are specified separately from permissions granted

to the underlying collection(s).

Views are defined using the standard MongoDB Query

Language and aggregation pipeline. They allow the

inclusion or exclusion of fields, masking of field values,

filtering, schema transformation, grouping, sorting, limiting,

and joining of data using $lookup and $graphLookup to

another collection.

You can learn more about MongoDB read-only views from

the documentation.

MongoDB Atlas: Database as a
Service For MongoDB

An increasing number of companies are moving to the

public cloud to not only reduce the operational overhead of

managing infrastructure, but also provide their teams with

access to on-demand services that give them the agility

they need to meet faster application development cycles.

This move from building IT to consuming IT as a service is

well aligned with parallel organizational shifts including

agile and DevOps methodologies and microservices

architectures. Collectively these seismic shifts in IT help

companies prioritize developer agility, productivity and time

to market.

MongoDB offers the fully managed, on-demand and elastic

MongoDB Atlas service, in the public cloud. Atlas enables

customers to deploy, operate, and scale MongoDB

databases on AWS, Azure, or GCP in just a few clicks or

programmatic API calls. MongoDB Atlas is available

through a pay-as-you-go model and billed on an hourly

basis. It’s easy to get started – use a simple GUI to select

the public cloud provider, region, instance size, and features

you need. MongoDB Atlas provides:

• Automated database and infrastructure provisioning so

teams can get the database resources they need, when

they need them, and can elastically scale whenever they

need to.

• Security features to protect your data, with network

isolation, fine-grained access control, auditing, and

end-to-end encryption, enabling you to comply with

industry regulations such as HIPAA.

• Built in replication both within and across regions for

always-on availability.

• Global clusters allows you to deploy a fully managed,

globally distributed database that provides low latency,

responsive reads and writes to users anywhere, with

strong data placement controls for regulatory

compliance.

• Fully managed, continuous and consistent backups with

point in time recovery to protect against data corruption,

and the ability to query backups in-place without full

restores.

27

https://docs.mongodb.com/master/core/views/#reference-views
https://docs.mongodb.com/master/core/views/#reference-views
https://www.mongodb.com/cloud/atlas

• Fine-grained monitoring and customizable alerts for

comprehensive performance visibility.

• Automated patching and single-click upgrades for new

major versions of the database, enabling you to take

advantage of the latest and greatest MongoDB

features.

• Live migration to move your self-managed MongoDB

clusters into the Atlas service or to move Atlas clusters

between cloud providers.

• Widespread coverage on the major cloud platforms with

availability in over 50 cloud regions across Amazon Web

Services, Microsoft Azure, and Google Cloud Platform.

MongoDB Atlas delivers a consistent experience across

each of the cloud platforms, ensuring developers can

deploy wherever they need to, without compromising

critical functionality or risking lock-in.

MongoDB Atlas can be used for everything from a quick

Proof of Concept, to dev/test/QA environments, to

powering production applications. The user experience

across MongoDB Atlas, Cloud Manager, and Ops Manager

is consistent, ensuring that you easily move from

on-premises to the public cloud, and between providers as

your needs evolve.

Built and run by the same team that engineers the

database, MongoDB Atlas is the best way to run MongoDB

in the cloud. Learn more or deploy a free cluster now.

MongoDB Stitch

The MongoDB Stitch serverless platform facilitates

application development with simple, secure access to data

and services from the client – getting your apps to market

faster while reducing operational costs.

Stitch represents the next stage in the industry's migration

to a more streamlined, managed infrastructure. Virtual

Machines running in public clouds (notably AWS EC2) led

the way, followed by hosted containers, and serverless

offerings such as AWS Lambda and Google Cloud

Functions. These still required backend developers to

implement and manage access controls and REST APIs to

provide access to microservices, public cloud services, and

of course data. Frontend developers were held back by

needing to work with APIs that weren't suited to rich data

queries.

The Stitch serverless platform addresses these challenges

by providing four services:

• StitcStitch QueryAnywherh QueryAnywheree. Brings MongoDB's rich query

language safely to the edge. An intuitive SDK provides

full access to your MongoDB database from mobile and

IoT devices. Authentication and declarative or

programmable access rules empower you to control

precisely what data your users and devices can access.

• StitcStitch Fh Functionsunctions. Stitch's HTTP service and webhooks

let you create secure APIs or integrate with

microservices and server-side logic. The same SDK that

accesses your database, also connects you with popular

cloud services, enriching your apps with a single method

call. Your custom, hosted JavaScript functions bring

everything together.

• StitcStitch Th Triggersriggers. Real-time notifications let your

application functions react in response to database

changes, as they happen, without the need for wasteful,

laggy polling.

• StitcStitch Mobile Synch Mobile Sync (coming soon). Automatically

synchronizes data between documents held locally in

MongoDB Mobile and your backend database, helping

resolve any conflicts – even after the mobile device has

been offline.

Whether building a mobile, IoT, or web app from scratch,

adding a new feature to an existing app, safely exposing

your data to new users, or adding service integrations,

Stitch can take the place of your application server and

save you writing thousands of lines of boilerplate code.

Conclusion

MongoDB is a modern database used by the world's most

sophisticated organizations, from cutting-edge startups to

the largest companies, to create applications never before

possible at a fraction of the cost of legacy databases.

MongoDB is the fastest-growing database ecosystem, with

over 35 million downloads, thousands of customers, and

over 1,000 technology and service partners. MongoDB

users rely on the best practices discussed in this guide to

maintain the highly available, secure and scalable

operations demanded by organizations today.

28

https://www.mongodb.com/cloud
https://www.mongodb.com/cloud/stitch

We Can Help

We are the MongoDB experts. Over 6,600 organizations

rely on our commercial products. We offer software and

services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Stitch is a serverless platform which accelerates

application development with simple, secure access to data

and services from the client – getting your apps to market

faster while reducing operational costs and effort.

MongoDB Mobile (Beta) MongoDB Mobile lets you store

data where you need it, from IoT, iOS, and Android mobile

devices to your backend – using a single database and

query language.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

MongoDB Stitch backend as a service (mongodb.com/

cloud/stitch)

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2018 MongoDB, Inc. All rights reserved.

29

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/products/mobile
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/cloud/stitch

	Table of Contents
	Introduction1
	Preparing for a MongoDB Deployment2
	Continuous Availability13
	Scaling a MongoDB System16
	Managing MongoDB18
	Security25
	MongoDB Atlas: Database as a Service For MongoDB27
	MongoDB Stitch: Backend as a Service28
	Conclusion28
	We Can Help29
	Resources29
	Introduction
	Preparing for a MongoDB Deployment
	MongoDB Pluggable Storage Engines
	Schema Design
	Document Model
	Collections
	Dynamic Schema & Schema Validation
	Indexes
	Transactions
	Visualizing your Schema and Adding Validation Rules: MongoDB Compass

	Document Size
	GridFS

	Data Lifecycle Management
	Time to Live (TTL)
	Capped Collections
	Dropping a Collection

	Indexing
	Query Optimization
	Profiling
	Primary and Secondary Indexes
	Index Creation Options
	Managing Indexes with the MongoDB WiredTiger Storage Engine
	Index Limitations
	Common Mistakes Regarding Indexes

	Working Sets
	MongoDB Setup and Configuration
	Setup
	Database Configuration
	Upgrades

	Data Migration
	Hardware
	Memory
	Storage
	Compression
	CPU
	Process Per Host
	Sizing for mongos and Config Server Processes

	Operating System and File System
	Configurations for Linux

	Networking
	Network Compression

	Production-Proven Recommendations

	Continuous Availability
	Journaling
	Data Redundancy
	Multi-Data Center Replication
	Write Guarantees
	Read Preferences
	Read Concerns
	Causal Consistency

	Scaling a MongoDB System
	Horizontal Scaling with Automatic Sharding
	Sharding Best Practices
	Dynamic Data Balancing
	Geographic Distribution

	Managing MongoDB: Provisioning, Monitoring and Disaster Recovery
	Deployments and Upgrades
	Monitoring & Capacity Planning
	Monitoring with Ops Manager and Cloud Manager
	Free MongoDB Monitoring Cloud Service
	mongotop
	mongostat
	Other Popular Tools
	Linux Utilities
	Windows Utilities

	Things to Monitor
	Application Logs And Database Logs
	Page Faults
	Disk
	CPU
	Connections
	Op Counters
	Queues
	System Configuration
	Shard Balancing
	Replication Lag
	Config Server Availability

	Disaster Recovery: Backup & Recovery
	File System Backups
	mongodump

	Integrating MongoDB with External Monitoring Solutions
	APM Integration

	Security
	Defense in Depth
	Authentication
	Authorization
	Auditing
	Encryption
	Read-Only, Redacted Views

	MongoDB Atlas: Database as a Service For MongoDB
	MongoDB Stitch

	Conclusion
	We Can Help
	Resources

