
Creating a New Branch
This is where the fun starts. Simply type this command to
create a new branch, so that you can work on a feature or fix
a bug in isolation:

If you’d like to rename a different branch, you should first
insert the current name, like in this example:

Since you’re not allowed to rename remote branches, you
can delete the old one and then push a new one by typing
these two commands:

You can also use the “git checkout” command to achieve this.
If you want to name the local branch after the remote one, you
only have to specify the remote branch’s name:

Switching Branches
To switch to a different branch and make it active (setting
it as the HEAD branch), you can rely on either “switch” or
“checkout”. We like “switch”, as it is self-explanatory and
“checkout” can be used for other tasks, but both are valid.

Publishing Branches
While you can’t create new branches on remote repositories,
you can most definitely publish an existing local branch by
typing this command:

Tracking Branches
This is an important command to create relationships between
local and remote branches - since initially, they don’t have any!

The most common example is having a local branch track a
remote one, so that you can simply type “git push” or “git pull”
without additional parameters to keep everything in sync. This
can be quickly achieved by typing the command below:

Renaming Branches
This command assumes you’ve already checked out the
branch you’d like to rename (your local HEAD branch):

OR

Keep in mind that you can only create new branches in your
local repository (you will see them remotely when published).

By default, the new branch will be based on your currently
checked out revision. If you’d like to start at a specific revision,
simply add that revision’s hash at the end of the command,
like so:

Tip: Make sure you give meaningful names to your branches
- something like “feature-being-worked-on” could be a good
starting point.

WORKING WITH BRANCHES IN GIT
presented by TOWER — the best Git client for Mac and Windows

30-day free trial available at
www.git-tower.com The best Git Client for Mac & Windows

$ git branch <new-branch-name>
 $ git branch -m <current-name> <new-name>

 $ git push -u origin <local-branch>

$ git push -u origin <new-name>

 $ git branch --track <new-branch> origin/<base-branch>

$ git checkout --track origin/<base-branch>

 $ git push origin --delete <old-name>

 $ git branch <new-branch-name> 2b504bee

$ git switch <other-branch>

$ git checkout <other-branch>

 $ git branch -m <new-name>

https://www.git-tower.com
https://www.git-tower.com/?utm_source=learn-website&utm_medium=working-with-branches+cheat+sheet+pdf&utm_campaign=Tower+website"
https://www.git-tower.com
https://www.git-tower.com

Comparing Branches
This is a very useful command when you need to decide if
you should integrate or delete a branch, as it presents you the
commits that were created exclusively in there.

Deleting Branches
When a local branch is no longer needed, you can delete it
by typing the command below:

Merging Branches
When it is time to integrate the new changes into your
current HEAD branch, it is time to merge!

Merging consists of two steps: you will need to switch to the
branch that will receive the new changes first, and then type
the “git merge” command:

Rebasing Branches
Rebasing is an alternative to merging - both achieve the
same goal, but the Rebase option re-writes the project history,
creating a straight line. As a result, you get a linear history,
which may be preferred by some teams.

Rebasing consists of two steps: you will need to switch to the
feature branch first, and then type the “git rebase” command:

Tip: You can also use this command to compare local and
remote states, like in the example below:

Tip: If that branch contains unmerged changes, you might
also need the “-f” option to force the deletion - if so, proceed
with caution!

To delete a remote branch, keep in mind that the command
is totally different:

To avoid a messy repository, make sure you periodically look
for obsolete branches and delete them.

$ git log <main>..<feature-branch>
 $ git branch -d <branch-name>

$ git push origin --delete <branch-name>

$ git switch <main>

$ git switch <feature-branch>

$ git merge <feature-branch>

$ git rebase <main>

$ git log <origin/main>..<main>

WORKING WITH BRANCHES IN GIT
presented by TOWER — the best Git client for Mac and Windows

The best Git Client for Mac & Windows

30-day free trial available at
www.git-tower.com

https://www.git-tower.com
https://www.git-tower.com
https://www.git-tower.com
https://www.git-tower.com/?utm_source=learn-website&utm_medium=working-with-branches+cheat+sheet+pdf&utm_campaign=Tower+website"

