
"It's raining cats and dogs!"

SELINUX
COLORING BOOK

the

DAN WALSH MÁIRÍN DUFFYwritten by illustrated by

TYPE ENFORCEMENT

PROCESS TYPES
The SELinux primary model of enforcement is called type
enforcement. Basically, this means we define the label on a
process based on its type, and the label on a file system
object based on its type.

Imagine a system where we define types on objects like cats
and dogs. A cat and dog are process types.

CAT DOG

CAT_CHOW DOG_CHOW

OBJECT TYPES
We have a class of objects that they want to interact with
which we call food. And I want to add types to the food,
cat_chow and dog_chow.

POLICY RULES

As a policy writer, I would say that a dog has permission to eat
dog_chow food and a cat has permission to eat cat_chow food.
In SELinux we would write this rule in policy, as shown below:

ALLOW CAT

DOGALLOW

CAT_CHOW:FOOD

DOG_CHOW:FOOD

EAT

EAT

CAT

DELICIOUS!

CAT_CHOW:FOOD

YUMMY!

DOG

DOG_CHOW:FOOD

With these rules the kernel would allow the cat process to eat
food labeled cat_chow and the dog to eat food labeled
dog_chow.

KERNEL

DOG

But in an SELinux system, everything is denied by default. This
means that if the dog process tried to eat the cat_chow, the
kernel would prevent it.

CAT_CHOW

Likewise, cats would not be allowed to touch dog food.

DOG_CHOW

CAT

KERNELNO! BAD CAT!
DON'T EAT THAT!

MCS ENFORCEMENT
We've typed the dog process and cat process, but what
happens if you have multiple dog processes: Fido and Spot?
You want to stop Fido from eating Spot's dog_chow.

FIDO
SPOT

One solution would be to create lots of new types, like
Fido_dog and Fido_dog_chow. But, this will quickly become
unruly because all dogs have pretty much the same
permissions.

To handle this we developed a new form of enforcement,
which we call Multi Category Security (MCS). In MCS, we add
another section of the label which we can apply to the dog
process and to the dog_chow food. Now we label the dog
process as dog:random1 (Fido) and dog:random2 (Spot).

DOG:RANDOM2DOG:RANDOM1

We label the dog chow as dog_chow:random1 (Fido) and
dog_chow:random2 (Spot).

DOG_CHOW:
RANDOM1

DOG_CHOW:
RANDOM2

MCS rules say that if the type enforcement rules are OK and the
random MCS labels match exactly, then the access is allowed. If
not, it is denied.

TYPE ENFORCEMENT

Fido (dog:random1) trying to eat cat_chow:food is denied by
type enforcement.

KERNEL

DOG

CAT_CHOW

Fido (dog:random1) is allowed to eat dog_chow:random1.

DOG:RANDOM1

DOG_CHOW:
RANDOM1

MCS ENFORCEMENT

Fido (dog:random1) denied to eat spot's (dog_chow:random2)
food.

KERNEL

DOG:
RANDOM1

DOG_CHOW:
RANDOM2

MLS ENFORCEMENT
Another form of SELinux enforcement, used much less
frequently, is called Multi Level Security (MLS); it was developed
back in the 60s and is used mainly in trusted operating systems
like Trusted Solaris.

The main idea is to control processes based on the level of the
data they will be using: a secret process can not read top-secret
data.

Instead of talking about different dogs, we now look at
different breeds. We might have a Greyhound and a
Chihuahua:

GREYHOUND CHIHUAHUA

We might want to allow the Greyhound to eat any dog food,
but a Chihuahua could choke if it tried to eat Greyhound dog
food.

We want to label the Greyhound as dog:Greyhound and his dog
food as dog_chow:Greyhound, and label the Chihuahua as
dog:Chihuahua and his food as dog_chow:Chihuahua.

DOG_CHOW:
GREYHOUND

DOG_CHOW:
CHIHUAHUA

With the MLS policy, we would have the MLS Greyhound label
dominate the Chihuahua label. This means dog:Greyhound is
allowed to eat
dog_chow:Greyhound and dog_chow:Chihuahua.

DOG:
GREYHOUND

DOG_CHOW:
GREYHOUND

DOG_CHOW:
FIDO

DOG_CHOW:CHIHUAHUA

DOG_CHOW:
CHIHUAHUA

DOG:
CHIHUAHUA

But dog:Chihuahua is not allowed to eat dog_chow:Greyhound.

KERNEL
THIS IS A BIT TOO
BEEFY FOR YOU...

DOG:
CHIHUAHUA

DOG_CHOW:
GREYHOUND

Of course, dog:Greyhound and dog:Chihuahua are still
prevented from eating cat_chow:Siamese by type
enforcement, even if the MLS type Greyhound dominates
Siamese.

KERNEL

DOG:
CHIHUAHUADOG:

GREYHOUND

CAT_CHOW:
SIAMESE

Learn more at redhat.com:

http://red.ht/security

