

Ansible for DevOps
Server and configuration management for
humans

Jeff Geerling

This book is for sale at http://leanpub.com/ansible-for-devops

This version was published on 2023-06-29

ISBN 978-0-9863934-3-3

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2014 - 2023 Jeff Geerling

http://leanpub.com/ansible-for-devops
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!
Please help Jeff Geerling by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just purchased @Ansible4DevOps by @geerlingguy on @leanpub -
https://leanpub.com/ansible-for-devops #ansible

The suggested hashtag for this book is #ansible.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#ansible

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20purchased%20@Ansible4DevOps%20by%20@geerlingguy%20on%20@leanpub%20-%20https://leanpub.com/ansible-for-devops%20%23ansible
https://twitter.com/intent/tweet?text=I%20just%20purchased%20@Ansible4DevOps%20by%20@geerlingguy%20on%20@leanpub%20-%20https://leanpub.com/ansible-for-devops%20%23ansible
https://twitter.com/search?q=%23ansible
https://twitter.com/search?q=%23ansible

Also By Jeff Geerling
Ansible for Kubernetes

You Only Have Crohn’s Once!

Kubernetes 101

https://leanpub.com/u/geerlingguy
https://leanpub.com/ansible-for-kubernetes
https://leanpub.com/you-only-have-crohns-once
https://leanpub.com/kubernetes-101

This book is dedicated to my wife, Natalie, and my children.

Editing by Margie Newman and Katherine Geerling.

Cover photograph and illustration © 2011 Jeff Geerling.

Ansible is a software product distributed under the GNU GPLv3 open source license.

Contents

Foreword . i

Preface . iii
Second Edition . iv
Who is this book for? . iv
Typographic conventions . iv
Please help improve this book! . vi

Current Published Book Version Information vi
About the Author . vi

Introduction . vii
In the beginning, there were sysadmins . vii
Modern infrastructure management . vii
Ansible and Red Hat . viii
Ansible Examples . x
Other resources . x

Chapter 1 - Getting Started with Ansible . 1
Ansible and Infrastructure Management . 1

On snowflakes and shell scripts . 1
Configuration management . 2

Installing Ansible . 3
Creating a basic inventory file . 5
Running your first Ad-Hoc Ansible command 7
Summary . 8

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 9
Prototyping and testing with local virtual machines 9

CONTENTS

Your first local server: Setting up Vagrant . 10
Using Ansible with Vagrant . 11
Your first Ansible playbook . 12
Cleaning Up . 16
Summary . 16

Chapter 3 - Ad-Hoc Commands . 18
Conducting an orchestra . 18
Build infrastructure with Vagrant for testing 19
Inventory file for multiple servers . 21
Your first ad-hoc commands . 23

Discover Ansible’s parallel nature . 23
Learning about your environment . 25
Make changes using Ansible modules 28

Configure groups of servers, or individual servers 29
Configure the Application servers . 29
Configure the Database servers . 30
Make changes to just one server . 32

Manage users and groups . 33
Manage packages . 34
Manage files and directories . 35

Get information about a file . 35
Copy a file to the servers . 35
Retrieve a file from the servers . 36
Create directories and files . 36
Delete directories and files . 37

Run operations in the background . 37
Update servers asynchronously with asynchronous jobs 38

Check log files . 40
Manage cron jobs . 41
Deploy a version-controlled application . 42
Ansible’s SSH connection history . 43

Paramiko . 44
OpenSSH (default) . 44
Faster OpenSSH with Pipelining . 44

Summary . 45

CONTENTS

Chapter 4 - Ansible Playbooks . 47
Power plays . 47
Running Playbooks with ansible-playbook 52

Limiting playbooks to particular hosts and groups 52
Setting user and sudo options with ansible-playbook 54
Other options for ansible-playbook . 54

Real-world playbook: Rocky Linux Node.js app server 55
Add extra repositories . 57
Deploy a Node.js app . 60
Launch a Node.js app . 62
Node.js app server summary . 63

Real-world playbook: Ubuntu LAMP server with Drupal 64
Include a variables file, and discover pre_tasks and handlers 64
Basic LAMP server setup . 66
Configure Apache . 68
Configure PHP with lineinfile . 70
Configure MySQL . 71
Install Composer . 72
Create a Drupal project with Composer 73
Install Drupal with Drush . 75
Drupal LAMP server summary . 76

Real-world playbook: Ubuntu server with Solr 77
Include a variables file, and more pre_tasks 78
Install Java . 79
Install Apache Solr . 79
Apache Solr server summary . 82

Summary . 82

Chapter 5 - Ansible Playbooks - Beyond the Basics 84
Handlers . 84
Environment variables . 86

Per-task environment variables . 87
Variables . 89

Playbook Variables . 90
Inventory variables . 92
Registered Variables . 94

CONTENTS

Accessing Variables . 94
Host and Group variables . 97

Automatically-loaded group_vars and host_vars 97
Magic variables with host and group variables and information . 98

Facts (Variables derived from system information) 99
Local Facts (Facts.d) . 101

Ansible Vault - Keeping secrets secret 102
Variable Precedence . 106

If/then/when - Conditionals . 108
Jinja Expressions, Python built-ins, and Logic 108
register . 110
when . 111
changed_when and failed_when . 112
ignore_errors . 114

Delegation, Local Actions, and Pauses . 114
Pausing playbook execution with wait_for 115
Running an entire playbook locally . 116

Prompts . 116
Tags . 118
Blocks . 119
Summary . 121

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 123
Imports . 123

Includes . 126
Dynamic includes . 127
Handler imports and includes . 127
Playbook imports . 128
Complete includes example . 128

Roles . 131
Role scaffolding . 132
Building your first role . 133
More flexibility with role vars and defaults 135
Other role parts: handlers, files, and templates 137

Handlers . 137
Files and Templates . 138

CONTENTS

Organizing more complex and cross-platform roles 139
Ansible Galaxy . 141

Getting roles from Galaxy . 142
Using role requirements files to manage dependencies 143

A LAMP server in nine lines of YAML 144
A Solr server in seven lines of YAML . 145
Helpful Galaxy commands . 146
Contributing to Ansible Galaxy . 147

Summary . 147

Chapter 7 - Ansible Plugins and Content Collections 148
Creating our first Ansible Plugin — A Jinja Filter 148
The history of Ansible Content Collections 153
The Anatomy of a Collection . 155

Putting our Plugin into a Collection . 157
Going deeper developing collections . 158

Collections on Automation Hub and Ansible Galaxy 159
Collection version constraints . 160
Where are collections installed? . 160

Summary . 162

Chapter 8 - Inventories . 163
A real-world web application server inventory 164

Non-prod environments, separate inventory files 168
Inventory variables . 169

host_vars . 170
group_vars . 172

Ephemeral infrastructure: Dynamic inventory 173
Dynamic inventory with DigitalOcean 174

DigitalOcean account prerequisites 174
Connecting to your DigitalOcean account 174
Creating a droplet with Ansible . 175
DigitalOcean dynamic inventory with digital_ocean.py 182

Dynamic inventory with AWS . 183
Inventory on-the-fly: add_host and group_by 183
Multiple inventory sources - mixing static and dynamic inventories . 185

CONTENTS

Creating custom dynamic inventories 185
Building a Custom Dynamic Inventory in Python 187
Building a Custom Dynamic Inventory in PHP 192
Managing a PaaS with a Custom Dynamic Inventory 195

Summary . 196

Chapter 9 - Ansible Cookbooks . 197
Highly-Available Infrastructure with Ansible 197

Directory Structure . 199
Individual Server Playbooks . 199
Main Playbook for Configuring All Servers 212
Getting the required roles . 212
Vagrantfile for Local Infrastructure via VirtualBox 213
Provisioner Configuration: DigitalOcean 218
Provisioner Configuration: Amazon Web Services (EC2) 223

AWS EC2 Dynamic inventory plugin 230
Summary . 232

ELK Logging with Ansible . 233
ELK Playbook . 234
Forwarding Logs from Other Servers . 240
Summary . 246

GlusterFS Distributed File System Configuration with Ansible 247
Configuring Gluster - Basic Overview 248
Configuring Gluster with Ansible . 249
Summary . 256

Mac Provisioning with Ansible and Homebrew 256
Running Ansible playbooks locally . 257
Automating Homebrew package and app management 257
Configuring macOS through dotfiles . 259
Summary . 261

Chapter 10 - Deployments with Ansible . 262
Deployment strategies . 262
Simple single-server deployments . 263

Provisioning a Ruby on Rails server . 264
Deploying a Rails app to the server . 267

CONTENTS

Provisioning and Deploying the Rails App 272
Deploying application updates . 274

Zero-downtime multi-server deployments 277
Ensuring zero downtime with serial and integration tests 286
Deploying to app servers behind a load balancer 288

Capistrano-style and blue-green deployments 296
Additional Deployment Features . 297
Summary . 299

Chapter 11 - Server Security and Ansible . 300
A brief history of SSH and remote access . 300

Telnet . 301
rlogin, rsh and rcp . 302
SSH . 303
The evolution of SSH and the future of remote access 305

Use secure and encrypted communication . 306
Disable root login and use sudo . 308
Remove unused software, open only required ports 310
Use the principle of least privilege . 311

User account configuration . 312
File permissions . 312

Update the OS and installed software . 313
Automating updates . 314
Automating updates for RHEL systems 315
Automating updates for Debian-based systems 315

Use a properly-configured firewall . 317
Configuring a firewall with ufw on Debian or Ubuntu 317
Configuring a firewall with firewalld on Fedora, RHEL and RHEL-

derivatives . 319
Make sure log files are populated and rotated 320
Monitor logins and block suspect IP addresses 321
Use SELinux (Security-Enhanced Linux) or AppArmor 323
Summary and further reading . 324

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 326
Installing Ansible AWX . 327

CONTENTS

Using AWX . 329
Uninstalling AWX . 332
Other Tower Features of Note . 332
Tower Alternatives . 333

Jenkins CI . 333
Build a local Jenkins server with Ansible 333
Create an Ansible playbook on the Jenkins server 336
Create a Jenkins job to run an Ansible Playbook 337

Summary . 338

Chapter 13 - Testing and CI for Ansible Content 340
Unit, Integration, and Functional Testing . 340
Debugging and Asserting . 342

The debug module . 342
The fail and assert modules . 344

Linting YAML with yamllint . 345
Performing a --syntax-check . 347
Linting Ansible content with ansible-lint 348
Automated testing and development with Molecule 350

Testing a role with Molecule . 351
Testing a playbook with Molecule . 353

Adjusting Molecule to use more flexible test containers 357
Verifying a playbook with Molecule 359
Adding lint configuration to Molecule 360

Molecule Summary . 360
Running your playbook in check mode . 361
Automated testing on GitHub using GitHub Actions 362

Automated testing in other CI environments 367
Real-world examples . 367

Functional testing using serverspec or testinfra 367
Summary . 368

Chapter 14 - Automating HTTPS and TLS Certificates 370
Generating Self-Signed Certificates with Ansible 370

Idempotent Nginx HTTPS playbook with a self-signed cert 372
Automating Let’s Encrypt with Ansible for free Certs 379

CONTENTS

Use Galaxy roles to get things done faster 380
Create the playbook . 381
Create a server and configure DNS . 387
Point the playbook inventory at the server 387
Access your server over HTTPS! . 388

Configuring Nginx to proxy HTTP traffic and serve it over HTTPS 389
Modify the Nginx configuration to proxy traffic 390

Summary . 393

Chapter 15 - Docker and Ansible . 394
A brief introduction to Docker containers . 394
Using Ansible to build and manage containers 396
Building a Flask app with Ansible and Docker 398

Data storage container . 405
Flask container . 405
MySQL container . 410
Ship it! . 411

Building containers with Ansible from the outside 412
Build a Hubot Slack bot container with ansible_connection: docker 412

Hubot and Slack . 413
Building a Docker container with Ansible 413
Building the hubot-slack role . 416
Building and running the Hubot Slack bot container 418

Summary . 419
Summary . 420

Afterword . 421

Appendix A - Using Ansible on Windows workstations 422
Method 1 - Use the Windows Subsystem for Linux 422

Installing Ansible inside WSL . 423
Method 2 - When WSL is not an option . 425

Prerequisites . 425
Set up an Ubuntu Linux Virtual Machine 425
Log into the Virtual Machine . 426
Install Ansible . 428

Summary . 429

CONTENTS

Appendix B - Ansible Best Practices and Conventions 430
Playbook Organization . 430

Write comments and use name liberally 430
Include related variables and tasks . 431
Use Roles to bundle logical groupings of configuration 432
Use role defaults and vars correctly . 433

YAML Conventions and Best Practices . 434
YAML for Ansible tasks . 435
Three ways to format Ansible tasks . 436

Shorthand/one-line (key=value) . 436
Structured map/multi-line (key:value) 437
Folded scalars/multi-line (>) . 438

Using | to format multiline variables . 439
Using ansible-playbook . 439
Use Ansible Tower . 440
Install Galaxy dependencies local to your playbook 440

Discriminate wisely when choosing community dependencies 441
Specify --forks for playbooks running on > 5 servers 442
Use Ansible’s Configuration file . 442
Summary . 443

Foreword
Over the last few years, Ansible has rapidly become one of the most popular IT
automation tools in the world. We’ve seen the open source community expand from
the beginning of the project in early 2012 to over 1200 individual contributors today.
Ansible’s modular architecture and broad applicability to a variety of automation
and orchestration problems created a perfect storm for hundreds of thousands of
users worldwide.

Ansible is a general purpose IT automation platform, and it can be used for a variety
of purposes. From configuration management: enforcing declared state across your
infrastructure, to procedural application deployment, to broad multi-component and
multi-system orchestration of complicated interconnected systems. It is agentless, so
it can coexist with legacy tools, and it’s easy to install, configure, and maintain.

Ansible had its beginnings in 2012, when Michael DeHaan, the project’s founder,
took inspiration from several tools he had written prior, along with some hands-on
experience with the state of configuration management at the time, and launched the
project in February of 2012. Some of Ansible’s unique attributes like its module-based
architecture and agentless approach quickly attracted attention in the open source
world.

In 2013, Said Ziouani, Michael DeHaan, and I launched Ansible, Inc. We wanted
to harness the growing adoption of Ansible in the open source world, and create
products to fill the gaps in the IT automation space as we saw them. The existing
tools were complicated, error-prone, and hard to learn. Ansible gave users across
an IT organization a low barrier of entry into automation, and it could be deployed
incrementally, solving as few or as many problems as the team needed without a big
shift in methodology.

This book is about using Ansible in a DevOps environment. I’m not going to try to
define what DevOps is or isn’t, or who’s doing it or not. My personal interpretation
of the idea is that DevOps is meant to shorten the distance between the developers
writing the code, and the operators running the application. Now, I don’t believe

Foreword ii

adding a new “DevOps” team in between existing development and operations teams
achieves that objective! (Oops, now I’m trying for a definition, aren’t I?)

Well, definitions aside, one of the first steps towards a DevOps environment is
choosing tools that can be consumed by both developers and operations engineers.
Ansible is one of those tools: you don’t have to be a software developer to use it, and
the playbooks that you write can easily be self-documenting. There have been a lot
of attempts at “write once, run anywhere” models of application development and
deployment, but I think Ansible comes the closest to providing a common language
that’s useful across teams and across clouds and different datacenters.

The author of this book, Jeff, has been a long-time supporter, contributor, and
advocate of Ansible, and he’s maintained a massive collection of impressive Ansible
roles in Galaxy, the public role-sharing service maintained by Ansible, Inc. Jeff has
used Ansible extensively in his professional career, and is eminently qualified to
write the end-to-end book on Ansible in a DevOps environment.

As you read this book, I hope you enjoy your journey into IT automation as much
as we have. Be well, do good work, and automate everything.

Tim Gerla Ansible, Inc. Co-Founder & CTO

Preface
Growing up, I had access to a world that not many kids ever get to enter. At the
local radio stations where my dad was chief engineer, I was fortunate to get to see
networks and IT infrastructure up close: Novell servers and old Mac and Windows
workstations in the ’90s; Microsoft and Linux-based servers; and everything in
between. Best of all, he brought home decommissioned servers and copies of Linux
burned to CD.

I began working with Linux and small-scale infrastructures before I started high
school, and my passion for infrastructure grew as I built a Cat5 wired network
and a small rack of networking equipment for a local grade school. When I started
developing full-time, what was once a hobby became a necessary part of my job, so
I invested more time in managing infrastructure efficiently. Over the past ten years,
I’ve gone from manually booting and configuring physical and virtual servers; to
using relatively complex shell scripts to provision and configure servers; to using
configuration management tools to manage thousands of cloud-based servers.

When I began converting my infrastructure to code, some of the best tools for testing,
provisioning, andmanagingmy servers were still in their infancy, but they have since
matured into fully-featured, robust tools that I use every day. Vagrant is an excellent
tool for managing local virtual machines to mimic real-world infrastructure locally
(or in the cloud), and Ansible — the subject of this book — is an excellent tool for
provisioning servers, managing their configuration, and deploying applications, even
on my local workstation!

These tools are still improving rapidly, and I’m excited for what the future holds.
The time I invest in learning new infrastructure tools well will be helpful for years
to come.

In these pages, I’ll share with you all I’ve learned about Ansible: my favorite tool for
server provisioning, configuration management, and application deployment. I hope
you enjoy reading this book as much as I did writing it!

— Jeff Geerling, 2015

Preface iv

Second Edition

I’ve published 23 major revisions to the book since the original 1.0 release in 2015.
After major rewrites (and three new chapters) in 2019 and 2020 to reflect Ansible’s
changing architecture, I decided to publish the new content as a ‘2nd edition’.

I will continue to publish revisions in the future, to keep this book relevant for as
long as possible! Please visit the book’s website, at www.ansiblefordevops.com, for
the latest updates, or to subscribe to be notified of Ansible and book news!

— Jeff Geerling, 2020

Who is this book for?

Many of the developers and sysadmins I work with are at least moderately com-
fortable administering a Linux server via SSH, and manage between 1-100 servers,
whether bare metal, virtualized, or using containers.

Some of these people have a little experience with configuration management tools
(usually with Puppet or Chef), and maybe a little experience with deployments and
continuous integration using tools like Jenkins, Capistrano, or Fabric. I am writing
this book for these friends who, I think, are representative of most people who have
heard of and/or are beginning to use Ansible.

If you are interested in both development and operations, and have at least a passing
familiarity with managing a server via the command line, this book should provide
you with an intermediate- to expert-level understanding of Ansible and how you can
use it to manage your infrastructure.

Typographic conventions

Ansible uses a simple syntax (YAML) and simple command-line tools (using common
POSIX conventions) for all its powerful abilities. Code samples and commands will
be highlighted throughout the book either inline (for example: ansible [command]),
or in a code block (with or without line numbers) like:

Preface v

1 ---

2 # This is the beginning of a YAML file.

Some lines of YAML and other code examples require more than 70 characters per
line, resulting in the code wrapping to a new line. Wrapping code is indicated by a \
at the end of the line of code. For example:

1 # The line of code wraps due to the extremely long URL.

2 wget http://www.example.com/really/really/really/long/path/in/the/url/c\

3 auses/the/line/to/wrap

When using the code, don’t copy the \ character, and make sure you don’t use a
newline between the first line with the trailing \ and the next line.

Links to pertinent resources and websites are added inline, like the following link to
Ansible¹, and can be viewed directly by clicking on them in eBook formats, or by
following the URL in the footnotes.

Sometimes, asides are added to highlight further information about a specific topic:

Informational asides will provide extra information.

Warning asides will warn about common pitfalls and how to avoid them.

Tip asides will give tips for deepening your understanding or optimizing
your use of Ansible.

When displaying commands run in a terminal session, if the commands are run under
your normal/non-root user account, the commands will be prefixed by the dollar sign
($). If the commands are run as the root user, they will be prefixed with the pound
sign (#).

¹https://www.ansible.com/

https://www.ansible.com/
https://www.ansible.com/

Preface vi

Please help improve this book!

New revisions of this book are published on a regular basis (see current book
publication stats below). If you think a particular section needs improvement or find
something missing, please post an issue in the Ansible for DevOps issue queue² (on
GitHub) or contact me via Twitter (@geerlingguy³).

All known issues with Ansible for DevOps will be aggregated on the book’s online
Errata⁴ page.

Current Published Book Version Information

• Current book version: 2.2
• Current Ansible version as of last publication: 8.0.0 (core 2.15.0)
• Current Date as of last publication: June 17, 2023

About the Author

Jeff Geerling is a developer who has worked in programming and reliability engi-
neering for companies with anywhere between one to thousands of servers. He also
manages many virtual servers for services offered by Midwestern Mac, LLC and has
been using Ansible to manage infrastructure since early 2013.

²https://github.com/geerlingguy/ansible-for-devops/issues
³https://twitter.com/geerlingguy
⁴https://www.ansiblefordevops.com/errata

https://github.com/geerlingguy/ansible-for-devops/issues
https://twitter.com/geerlingguy
https://www.ansiblefordevops.com/errata
https://github.com/geerlingguy/ansible-for-devops/issues
https://twitter.com/geerlingguy
https://www.ansiblefordevops.com/errata

Introduction
In the beginning, there were sysadmins

Since the beginning of networked computing, deploying and managing servers
reliably and efficiently has been a challenge. Historically, system administrators
were walled off from the developers and users who interact with the systems
they administer, and they managed servers by hand, installing software, changing
configurations, and administering services on individual servers.

As data centers grew, and hosted applications became more complex, administrators
realized they couldn’t scale their manual systems management as fast as the
applications they were enabling. That’s why server provisioning and configuration
management tools came to flourish.

Server virtualization brought large-scale infrastructure management to the fore, and
the number of servers managed by one admin (or by a small team of admins), has
grown by an order of magnitude. Instead of deploying, patching, and destroying
every server by hand, admins now are expected to bring up new servers, either
automatically or with minimal intervention. Large-scale IT deployments now may
involve hundreds or thousands of servers; inmany of the largest environments, server
provisioning, configuration, and decommissioning are fully automated.

Modern infrastructure management

As the systems that run applications become an ever more complex and integral part
of the software they run, application developers themselves have begun to integrate
their work more fully with operations personnel. In many companies, development
and operations work is integrated. Indeed, this integration is a requirement for
modern test-driven application design.

As a software developer by trade, and a sysadmin by necessity, I have seen the power
in uniting development and operations—more commonly referred to now as DevOps

Introduction viii

or Site Reliability Engineering. When developers begin to think of infrastructure as
part of their application, stability and performance become normative. When sysad-
mins (most of whom have intermediate to advanced knowledge of the applications
and languages being used on servers they manage) work tightly with developers,
development velocity is improved, and more time is spent doing ‘fun’ activities like
performance tuning, experimentation, and getting things done, and less time putting
out fires.

DevOps is a loaded word; some people argue using the word to identify
both the movement of development and operations working more closely
to automate infrastructure-related processes, and the personnel who skew
slightly more towards the system administration side of the equation,
dilutes the word’s meaning. I think the word has come to be a rallying cry
for the employees who are dragging their startups, small businesses, and
enterprises into a new era of infrastructure growth and stability. I’m not
too concerned that the term has become more of a catch-all for modern
infrastructure management. My advice: spend less time arguing over the
definition of the word, and more time making it mean something to you.

Ansible and Red Hat

Ansible was released in 2012 by Michael DeHaan (@laserllama⁵ on Twitter), a
developer who has been working with configuration management and infrastructure
orchestration in one form or another for many years. Through his work with Puppet
Labs and Red Hat (where he worked on Cobbler⁶, a configuration management
tool, Func, a tool for communicating commands to remote servers, and some other
projects⁷), he experienced the trials and tribulations of many different organizations
and individual sysadmins on their quest to simplify and automate their infrastructure
management operations.

Additionally, Michael foundmany shops were using separate tools⁸ for configuration
management (Puppet, Chef, cfengine), server deployment (Capistrano, Fabric), and

⁵https://twitter.com/laserllama
⁶http://cobbler.github.io/
⁷https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
⁸http://highscalability.com/blog/2012/4/18/ansible-a-simple-model-driven-configuration-management-and-c.html

https://twitter.com/laserllama
http://cobbler.github.io/
https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
http://highscalability.com/blog/2012/4/18/ansible-a-simple-model-driven-configuration-management-and-c.html
https://twitter.com/laserllama
http://cobbler.github.io/
https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
http://highscalability.com/blog/2012/4/18/ansible-a-simple-model-driven-configuration-management-and-c.html

Introduction ix

ad-hoc task execution (Func, plain SSH), and wanted to see if there was a better way.
Ansible wraps up all three of these features into one tool, and does it in a way that’s
actually simpler and more consistent than any of the other task-specific tools!

Ansible aims to be:

1. Clear - Ansible uses a simple syntax (YAML) and is easy for anyone (developers,
sysadmins, managers) to understand. APIs are simple and sensible.

2. Fast - Fast to learn, fast to set up—especially considering you don’t need to
install extra agents or daemons on all your servers!

3. Complete - Ansible does three things in one, and does them verywell. Ansible’s
‘batteries included’ approach means you have everything you need in one
complete package.

4. Efficient - No extra software on your servers means more resources for your
applications. Also, since Ansible modules work via JSON, Ansible is extensible
with modules written in a programming language you already know.

5. Secure - Ansible uses SSH, and requires no extra open ports or potentially-
vulnerable daemons on your servers.

Ansible also has a lighter side that gives the project a little personality. As an example,
Ansible’s major releases are named after Led Zeppelin songs (e.g. 2.0 was named
after 1973’s “Over the Hills and Far Away”, 1.x releases were named after Van Halen
songs). Additionally, Ansible uses cowsay, if installed, to wrap output in an ASCII
cow’s speech bubble (this behavior can be disabled in Ansible’s configuration).

Ansible, Inc.⁹ was founded by Saïd Ziouani (@SaidZiouani¹⁰ on Twitter), Michael
DeHaan, and Tim Gerla, and acquired by Red Hat in 2015. The Ansible team oversees
core Ansible development and provides services (such as Ansible Consulting¹¹) and
extra tooling (such as Ansible Tower¹²) to organizations using Ansible. Hundreds of
individual developers have contributed patches to Ansible, and Ansible is the most
starred infrastructure management tool on GitHub (with over 33,000 stars as of this
writing).

In October 2015, Red Hat acquired Ansible, Inc., and has proven itself to be a good
steward and promoter of Ansible. I see no indication of this changing in the future.

⁹https://www.ansible.com/
¹⁰https://twitter.com/SaidZiouani
¹¹https://www.ansible.com/products/consulting
¹²https://www.ansible.com/tower

https://www.ansible.com/
https://twitter.com/SaidZiouani
https://www.ansible.com/products/consulting
https://www.ansible.com/tower
https://www.ansible.com/
https://twitter.com/SaidZiouani
https://www.ansible.com/products/consulting
https://www.ansible.com/tower

Introduction x

Ansible Examples

There are many Ansible examples (playbooks, roles, infrastructure, configuration,
etc.) throughout this book. Most of the examples are in the Ansible for DevOps
GitHub repository¹³, so you can browse the code in its final state while you’re reading
the book. Some of the line numbering may not match the book exactly (especially if
you’re reading an older version of the book!), but I will try my best to keep everything
synchronized over time.

Other resources

We’ll explore all aspects of usingAnsible to provision andmanage your infrastructure
in this book, but there’s no substitute for the wealth of documentation and commu-
nity interaction that make Ansible great. Check out the links below to find out more
about Ansible and discover the community:

• Ansible Documentation¹⁴ - Covers all Ansible options in depth. There are few
open source projects with documentation as clear and thorough.

• Ansible Glossary¹⁵ - If there’s ever a term in this book you don’t seem to fully
understand, check the glossary.

• The Bullhorn¹⁶ - Ansible’s official newsletter.
• Ansible Mailing List¹⁷ - Discuss Ansible and submit questions with Ansible’s
community via this Google group.

• Ansible on GitHub¹⁸ - The official Ansible code repository, where the magic
happens.

• Ansible Example Playbooks on GitHub¹⁹ - Many examples for common server
configurations.

• Getting Started with Ansible²⁰ - A simple guide to Ansible’s community and
resources.

¹³https://github.com/geerlingguy/ansible-for-devops
¹⁴https://docs.ansible.com/ansible/
¹⁵https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
¹⁶https://us19.campaign-archive.com/home/?u=56d874e027110e35dea0e03c1&id=d6635f5420
¹⁷https://groups.google.com/forum/#!forum/ansible-project
¹⁸https://github.com/ansible/ansible
¹⁹https://github.com/ansible/ansible-examples
²⁰https://www.ansible.com/resources/get-started

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops
https://docs.ansible.com/ansible/
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://us19.campaign-archive.com/home/?u=56d874e027110e35dea0e03c1&id=d6635f5420
https://groups.google.com/forum/#!forum/ansible-project
https://github.com/ansible/ansible
https://github.com/ansible/ansible-examples
https://www.ansible.com/resources/get-started
https://github.com/geerlingguy/ansible-for-devops
https://docs.ansible.com/ansible/
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://us19.campaign-archive.com/home/?u=56d874e027110e35dea0e03c1&id=d6635f5420
https://groups.google.com/forum/#!forum/ansible-project
https://github.com/ansible/ansible
https://github.com/ansible/ansible-examples
https://www.ansible.com/resources/get-started

Introduction xi

• Ansible Blog²¹

I’d like to especially highlight Ansible’s documentation (the first resource listed
above); one of Ansible’s greatest strengths is its well-written and extremely relevant
documentation, containing a large number of relevant examples and continuously-
updated guides. Very few projects—open source or not—have documentation as
thorough, yet easy-to-read. This book is meant as a supplement to, not a replacement
for, Ansible’s documentation!

²¹https://www.ansible.com/blog

https://www.ansible.com/blog
https://www.ansible.com/blog

Chapter 1 - Getting Started with
Ansible
Ansible and Infrastructure Management

On snowflakes and shell scripts

Many developers and system administrators manage servers by logging into them via
SSH, making changes, and logging off. Some of these changes would be documented,
some would not. If an admin needed to make the same change to many servers (for
example, changing one value in a config file), the admin would manually log into
each server and repeatedly make this change.

If there were only one or two changes in the course of a server’s lifetime, and if
the server were extremely simple (running only one process, with one configuration,
and a very simple firewall), and if every change were thoroughly documented, this
process wouldn’t be a problem.

But for almost every company in existence, servers are more complex—most run tens,
sometimes hundreds of different applications or application containers. Most servers
have complicated firewalls and dozens of tweaked configuration files. And even with
change documentation, the manual process usually results in some servers or some
steps being forgotten.

If the admins at these companies wanted to set up a new server exactly like one that
is currently running, they would need to spend a good deal of time going through
all of the installed packages, documenting configurations, versions, and settings; and
they would spend a lot of unnecessary time manually reinstalling, updating, and
tweaking everything to get the new server to run close to how the old server did.

Some admins may use shell scripts to try to reach some level of sanity, but I’ve yet to
see a complex shell script that handles all edge cases correctly while synchronizing
multiple servers’ configuration and deploying new code.

Chapter 1 - Getting Started with Ansible 2

Configuration management

Lucky for you, there are tools to help you avoid having these snowflake servers—
servers that are uniquely configured and impossible to recreate from scratch because
they were hand-configured without documentation. Tools like CFEngine²², Puppet²³
and Chef²⁴ became very popular in the mid-to-late 2000s.

But there’s a reason why many developers and sysadmins stick to shell scripting and
command-line configuration: it’s simple and easy-to-use, and they’ve had years of
experience using bash and command-line tools. Why throw all that out the window
and learn a new configuration language and methodology?

Enter Ansible. Ansible was built (and continues to be improved) by developers and
sysadmins who know the command line—and want to make a tool that helps them
manage their servers exactly the same as they have in the past, but in a repeatable
and centrally managed way. Ansible also has other tricks up its sleeve, making it a
true Swiss Army knife for people involved in DevOps (not just the operations side).

One of Ansible’s greatest strengths is its ability to run regular shell commands
verbatim, so you can take existing scripts and commands and work on converting
them into idempotent playbooks as time allows. For someone (like me) who was
comfortable with the command line, but never became proficient in more compli-
cated tools like Puppet or Chef (which both required at least a slight understanding
of Ruby and/or a custom language just to get started), Ansible was a breath of fresh
air.

Ansible works by pushing changes out to all your servers (by default), and requires
no extra software to be installed on your servers (thus no extra memory footprint,
and no extra daemon to manage), unlike most other configuration management tools.

²²http://cfengine.com/
²³http://puppetlabs.com/
²⁴http://www.getchef.com/chef/

http://cfengine.com/
http://puppetlabs.com/
http://www.getchef.com/chef/
http://cfengine.com/
http://puppetlabs.com/
http://www.getchef.com/chef/

Chapter 1 - Getting Started with Ansible 3

Idempotence is the ability to run an operation which produces the same
result whether run once or multiple times (source²⁵).

An important feature of a configuration management tool is its ability to
ensure the same configuration is maintained whether you run it once or
a thousand times. Many shell scripts have unintended consequences if run
more than once, but Ansible deploys the same configuration to a server over
and over again without making any changes after the first deployment.

In fact, almost every aspect of Ansible modules and commands is idem-
potent, and for those that aren’t, Ansible allows you to define when the
given command should be run, and what constitutes a changed or failed
command, so you can easily maintain an idempotent configuration on all
your servers.

Installing Ansible

Ansible’s only real dependency is Python. Once Python is installed, the simplest way
to get Ansible running is to use pip, a simple package manager for Python.

If you’re on a Mac, installing Ansible is a piece of cake:

1. Check if pip is installed (which pip). If not, install it: sudo easy_install pip

2. Install Ansible: pip install ansible

You could also install Ansible via Homebrew²⁶ with brew install ansible. Either
way (pip or brew) is fine, but make sure you update Ansible using the same system
with which it was installed!

If you’re running Windows, it will take a little extra work to set everything up.
Typically, people run Ansible inside the Windows Subsystem for Linux. For detailed
instructions setting up Ansible under the WSL, see Appendix A - Using Ansible on
Windows workstations.

If you’re running Linux, chances are you already have Ansible’s dependencies
installed, but we’ll cover the most common installation methods.

²⁵http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
²⁶http://brew.sh/

http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
http://brew.sh/
http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
http://brew.sh/

Chapter 1 - Getting Started with Ansible 4

If you have python-pip and python-devel (python-dev on Debian/Ubuntu) installed,
use pip to install Ansible (this assumes you also have the ‘Development Tools’
package installed, so you have gcc, make, etc. available):

$ pip install ansible

Using pip allows you to upgrade Ansible with pip install --upgrade ansible.

Fedora/Red Hat Enterprise Linux/CentOS:

The easiest way to install Ansible on a Fedora-like system is to use the official dnf
package. If you’re running Red Hat Enterprise Linux (RHEL) or CentOS/Rocky/Alma
Linux, you need to install EPEL’s RPM before you install Ansible (see the info section
below for instructions):

$ dnf -y install ansible

On RHEL/CentOS systems, python-pip and ansible are available via the
EPEL repository²⁷. If you run the command dnf repolist | grep epel (to
see if the EPEL repo is already available) and there are no results, you need
to install it with the following commands:

If you're on RHEL/CentOS 6:

$ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/\

epel-release-6-8.noarch.rpm

If you're on RHEL/CentOS 7:

$ yum install epel-release

If you're on RHEL 8+/Fedora:

$ dnf install epel-release

Debian/Ubuntu:

The easiest way to install Ansible on a Debian or Ubuntu system is to use the official
apt package.

²⁷https://fedoraproject.org/wiki/EPEL

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Chapter 1 - Getting Started with Ansible 5

$ sudo apt-add-repository -y ppa:ansible/ansible

$ sudo apt-get update

$ sudo apt-get install -y ansible

If you get an error like “sudo: add-apt-repository: command not found”,
you’re probably missing the software-properties-common package. Install
it with the command:

$ sudo apt-get install software-properties-common

Once

Ansible is installed, make sure it’s working properly by entering ansible --version

on the command line. You should see the currently-installed version information:

$ ansible --version

ansible [core 2.14.6]

...

python version = 3.10.11

jinja version = 3.1.2

libyaml = True

What about Python 3? If you have both Python 2 and Python 3 installed,
and pip is aliased to an older Python 2 version of pip, you should consider
installing Python 3 and pip3, and using that version instead. Ansible is fully
compatible with Python 3, and unless you’re running on a very old system
that doesn’t have Python 3 available for it, you should use Python 3.

Creating a basic inventory file

Ansible uses an inventory file (basically, a list of servers) to communicate with your
servers. Like a hosts file (at /etc/hosts) that matches IP addresses to domain names,
an Ansible inventory file matches servers (IP addresses or domain names) to groups.
Inventory files can do a lot more, but for now, we’ll just create a simple file with one
server. Create a file named hosts.ini in a test project folder:

Chapter 1 - Getting Started with Ansible 6

$ mkdir test-project

$ cd test-project

$ touch hosts.ini

Inventory file names do not have to follow any particular naming conven-
tion. I often use the file name hosts.ini for Ansible’s default ‘ini-style’
syntax, but I also sometimes call the file inventory (with no file extension).

Edit this hosts file with nano, vim, or whatever editor you’d like. Put the following
into the file:

1 [example]

2 www.example.com

…where example is the group of servers you’re managing and www.example.com is the
domain name (or IP address) of a server in that group. If you’re not using port 22 for
SSH on this server, you will need to add it to the address, like www.example.com:2222,
since Ansible defaults to port 22 and won’t get this value from your ssh config file.

This first example assumes you have a server set up that you can test with;
if you don’t already have a spare server somewhere that you can connect
to, you might want to create a small VM using DigitalOcean, AmazonWeb
Services, Linode, or some other service that bills by the hour. That way you
have a full server environment to work with when learning Ansible—and
when you’re finished testing, delete the server and you’ll only be billed a
few pennies!

Replace the www.example.com in the above example with the name or IP
address of your server.

You can also place your inventory in Ansible’s global inventory file,
/etc/ansible/hosts, and any playbook will default to that if no other
inventory is specified. However, that file requires sudo permissions and
it is usually better to maintain inventory alongside your Ansible projects.

Chapter 1 - Getting Started with Ansible 7

Running your first Ad-Hoc Ansible command

Now that you’ve installed Ansible and created an inventory file, it’s time to run a
command to see if everything works! Enter the following in the terminal (we’ll do
something safe so it doesn’t make any changes on the server):

$ ansible -i hosts.ini example -m ping -u [username]

…where [username] is the user you use to log into the server. If everything worked,
you should see a message that shows www.example.com | SUCCESS >>, then the
result of your ping. If it didn’t work, run the command again with -vvvv on the end
to see verbose output. Chances are you don’t have SSH keys configured properly—if
you login with ssh username@www.example.com and that works, the above Ansible
command should work, too.

Ansible assumes you’re using passwordless (key-based) login for SSH (e.g.
you login by entering ssh username@example.com and don’t have to type a
password). If you’re still logging into your remote servers with a username
and password, or if you need a primer on Linux remote authentication and
security best practices, please read Chapter 11 - Server Security andAnsible.
If you insist on using passwords, add the --ask-pass (-k) flag to Ansible
commands (you may also need to install the sshpass package for this to
work). This entire book is written assuming passwordless authentication,
so you’ll need to keep this in mind every time you run a command or
playbook.

Need a primer on SSH key-based authentication? Please read through
Ubuntu’s community documentation on SSH/OpenSSH/Keys²⁸.

Let’s run a more useful command:

²⁸https://help.ubuntu.com/community/SSH/OpenSSH/Keys

https://help.ubuntu.com/community/SSH/OpenSSH/Keys
https://help.ubuntu.com/community/SSH/OpenSSH/Keys

Chapter 1 - Getting Started with Ansible 8

$ ansible -i hosts.ini example -a "free -h" -u [username]

In this example, we quickly see memory usage (in a human-readable format) on
all the servers (for now, just one) in the example group. Commands like this are
helpful for quickly finding a server that has a value out of a normal range. I often use
commands like free -h (to see memory statistics), df -h (to see disk usage statistics),
and the like tomake sure none ofmy servers is behaving erratically.While it’s good to
track these details in an external tool like Nagios²⁹, Munin³⁰, or Cacti³¹, it’s also nice
to check these stats on all your servers with one simple command and one terminal
window!

Summary

That’s it! You’ve just learned about configuration management and Ansible, installed
it, told it about your server, and ran a couple commands on that server through
Ansible. If you’re not impressed yet, that’s okay—you’ve only seen the tip of the
iceberg.

/ A doctor can bury his mistakes but an \

| architect can only advise his clients |

\ to plant vines. (Frank Lloyd Wright) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

²⁹http://www.nagios.org/
³⁰http://munin-monitoring.org/
³¹http://www.cacti.net/

http://www.nagios.org/
http://munin-monitoring.org/
http://www.cacti.net/
http://www.nagios.org/
http://munin-monitoring.org/
http://www.cacti.net/

Chapter 2 - Local Infrastructure
Development: Ansible and
Vagrant
Prototyping and testing with local virtual
machines

Ansible works well with any server to which you can connect—remote or local. For
speedier testing and development of Ansible playbooks, and for testing in general, it’s
a very good idea to work locally. Local development and testing of infrastructure is
both safer and faster than doing it on remote/live machines—especially in production
environments!

In the past decade, test-driven development (TDD), in one form or another,
has become the norm for much of the software industry. Infrastructure
development hasn’t been as organized until recently, and best practices
dictate that infrastructure (which is becoming more and more important
to the software that runs on it) should be thoroughly tested as well.

Changes to software are tested either manually or in some automated fash-
ion; there are now systems that integrate both with Ansible and with other
deployment and configuration management tools, to allow some amount
of infrastructure testing as well. Even if it’s just testing a configuration
change locally before applying it to production, that approach is a thousand
times better than what, in the software development world, would be
called ‘cowboy coding’—working directly in a production environment, not
documenting or encapsulating changes in code, and not having a way to
roll back to a previous version.

The past decade has seen the growth of many virtualization tools that allow for
flexible and very powerful infrastructure emulation, all from your local workstation!

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 10

It’s empowering to be able to play around with a config file, or to tweak the order
of a server update to perfection, over and over again, with no fear of breaking an
important server. If you use a local virtual machine, there’s no downtime for a server
rebuild; just re-run the provisioning on a new VM, and you’re back up and running
in minutes—with no one the wiser.

Vagrant³², a server provisioning tool, and VirtualBox³³, a local virtualization envi-
ronment, make a potent combination for testing infrastructure and individual server
configurations locally. Both applications are free and open source, and work well on
Mac, Linux, or Windows hosts.

We’re going to set up Vagrant and VirtualBox for easy testing with Ansible to
provision a new server.

Your first local server: Setting up Vagrant

To get started with your first local virtual server, you need to download and install
Vagrant and VirtualBox, and set up a simple Vagrantfile, which will describe the
virtual server.

1. Download and install Vagrant and VirtualBox (whichever version is appropriate
for your OS): - Download Vagrant³⁴ - Download VirtualBox³⁵ (when installing,
make sure the command line tools are installed, so Vagrant works with it)

2. Create a new folder somewhere on your hard drive where you will keep your
Vagrantfile and provisioning instructions.

3. Open a Terminal or PowerShell window, then navigate to the folder you just
created.

4. Add a Rocky Linux 8.x 64-bit ‘box’ using the vagrant box add³⁶ command:
vagrant box add geerlingguy/rockylinux8 (note: HashiCorp’s Vagrant
Cloud³⁷ has a comprehensive list of different pre-made Linux boxes. Also, check
out the ‘official’ Vagrant Ubuntu boxes in Vagrant’s Boxes documentation³⁸.

³²https://www.vagrantup.com
³³https://www.virtualbox.org/
³⁴https://www.vagrantup.com/downloads.html
³⁵https://www.virtualbox.org/wiki/Downloads
³⁶https://www.vagrantup.com/docs/boxes.html
³⁷https://app.vagrantup.com/boxes/search
³⁸https://www.vagrantup.com/docs/boxes.html

https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/docs/boxes.html
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://www.vagrantup.com/docs/boxes.html
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/docs/boxes.html
https://app.vagrantup.com/boxes/search
https://www.vagrantup.com/docs/boxes.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 11

5. Create a default virtual server configuration using the box you just downloaded:
vagrant init geerlingguy/rockylinux8

6. Boot your Rocky Linux server: vagrant up

Vagrant downloaded a pre-built 64-bit Rocky Linux 8 virtual machine image (you
can build your own³⁹ virtual machine ‘boxes’, if you so desire), loaded the image
into VirtualBox with the configuration defined in the default Vagrantfile (which is
now in the folder you created earlier), and booted the virtual machine.

Managing this virtual server is extremely easy: vagrant haltwill shut down the VM,
vagrant up will bring it back up, and vagrant destroy will completely delete the
machine from VirtualBox. A simple vagrant up again will re-create it from the base
box you originally downloaded.

Now that you have a running server, you can use it just like you would any other
server, and you can connect via SSH. To connect, enter vagrant ssh from the folder
where the Vagrantfile is located. If you want to connect manually, or connect from
another application, enter vagrant ssh-config to get the required SSH details.

Using Ansible with Vagrant

Vagrant’s ability to bring up preconfigured boxes is convenient on its own, but you
could do similar things with the same efficiency using VirtualBox’s (or VMWare’s,
or Parallels’) GUI. Vagrant has some other tricks up its sleeve:

• Network interface management⁴⁰: You can forward ports to a VM, share the
public network connection, or use private networking for inter-VM and host-
only communication.

• Shared folder management⁴¹: Vagrant sets up shares between your host ma-
chine and VMs using NFS or (much slower) native folder sharing in VirtualBox.

• Multi-machine management⁴²: Vagrant is able to configure and control mul-
tiple VMs within one Vagrantfile. This is important because, as stated in the

³⁹https://www.vagrantup.com/docs/providers/virtualbox/boxes.html
⁴⁰https://www.vagrantup.com/docs/networking
⁴¹https://www.vagrantup.com/docs/synced-folders
⁴²https://www.vagrantup.com/docs/multi-machine

https://www.vagrantup.com/docs/providers/virtualbox/boxes.html
https://www.vagrantup.com/docs/networking
https://www.vagrantup.com/docs/synced-folders
https://www.vagrantup.com/docs/multi-machine
https://www.vagrantup.com/docs/providers/virtualbox/boxes.html
https://www.vagrantup.com/docs/networking
https://www.vagrantup.com/docs/synced-folders
https://www.vagrantup.com/docs/multi-machine

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 12

documentation, “Historically, running complex environments was done by
flattening them onto a single machine. The problem with that is that it is an
inaccurate model of the production setup, which behaves far differently.”

• Provisioning⁴³:When running vagrant up the first time, Vagrant automatically
provisions the newly-minted VM using whatever provisioner you have config-
ured in the Vagrantfile. You can also run vagrant provision after the VM has
been created to explicitly run the provisioner again.

It’s this last feature that is most important for us. Ansible is one of many provisioners
integrated with Vagrant (others include basic shell scripts, Chef, Docker, Puppet, and
Salt). When you call vagrant provision (or vagrant up the first time), Vagrant
passes off the VM to Ansible, and tells Ansible to run a defined Ansible playbook.
We’ll get into the details of Ansible playbooks later, but for now, we’re going to edit
our Vagrantfile to use Ansible to provision our virtual machine.

Open the Vagrantfile that was created when we used the vagrant init command
earlier. Add the following lines just before the final ‘end’ (Vagrantfiles use Ruby
syntax, in case you’re wondering):

1 # Provisioning configuration for Ansible.

2 config.vm.provision "ansible" do |ansible|

3 ansible.playbook = "playbook.yml"

4 end

This is a very basic configuration to get you started usingAnsible with Vagrant. There
are many other Ansible options⁴⁴ you can use once we get deeper into using Ansible.
For now, we just want to set up a very basic playbook—a simple file you create to
tell Ansible how to configure your VM.

Your first Ansible playbook

Let’s create the Ansible playbook.yml file now. Create an empty text file in the same
folder as your Vagrantfile, and put in the following contents:

⁴³https://www.vagrantup.com/docs/provisioning
⁴⁴https://www.vagrantup.com/docs/provisioning/ansible_intro

https://www.vagrantup.com/docs/provisioning
https://www.vagrantup.com/docs/provisioning/ansible_intro
https://www.vagrantup.com/docs/provisioning
https://www.vagrantup.com/docs/provisioning/ansible_intro

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 13

1 ---

2 - hosts: all

3 become: yes

4

5 tasks:

6 - name: Ensure chrony (for time synchronization) is installed.

7 dnf:

8 name: chrony

9 state: present

10

11 - name: Ensure chrony is running.

12 service:

13 name: chronyd

14 state: started

15 enabled: yes

I’ll get into what this playbook is doing in a minute. For now, let’s run the playbook
on our VM. Make sure you’re in the same directory as the Vagrantfile and new
playbook.yml file, and enter vagrant provision. You should see status messages
for each of the ‘tasks’ you defined, and then a recap showing what Ansible did on
your VM—something like the following:

PLAY RECAP **

default : ok=3 changed=0 unreachable=0 failed=0

Ansible just took the simple playbook you defined, parsed the YAML syntax, and
ran a bunch of commands via SSH to configure the server as you specified. Let’s go
through the playbook, step by step:

1 ---

This first line is a marker showing that the rest of the document will be formatted in
YAML (read an introduction to YAML⁴⁵).

⁴⁵https://yaml.org/spec/1.2.2/

https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 14

2 - hosts: all

This line tells Ansible to which hosts this playbook applies. all works here, since
Vagrant is invisibly using its own Ansible inventory file (instead of using a manually-
created hosts.ini file), which just defines the Vagrant VM.

3 become: yes

Since we need privileged access to install chrony and modify system configuration,
this line tells Ansible to use sudo for all the tasks in the playbook (you’re telling
Ansible to ‘become’ the root user with sudo, or an equivalent).

5 tasks:

All the tasks after this line will be run on all hosts (or, in our case, our one VM).

6 - name: Ensure chrony (for time synchronization) is installed.

7 dnf:

8 name: chrony

9 state: present

This command is the equivalent of running dnf install chrony, but is much more
intelligent; it will check if chrony is installed, and, if not, install it. This is the
equivalent of the following shell script:

if ! rpm -qa | grep -qw chrony; then

dnf install -y chrony

fi

However, the above script is still not quite as robust as Ansible’s dnf command.What
if some other package with chrony in its name is installed, but not chrony? This
script would require extra tweaking and complexity to match the simple Ansible dnf
command, especially after we explore the dnf module more intimately (or the apt

module for Debian-flavored Linux, or package for OS-agnostic package installation).

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 15

11 - name: Ensure chrony is running.

12 service:

13 name: chronyd

14 state: started

15 enabled: yes

This final task both checks and ensures that the chronyd service is started and
running, and sets it to start at system boot. A shell script with the same effect would
be:

Start chronyd if it's not already running.

if ps aux | grep -q "[c]hronyd"

then

echo "chronyd is running." > /dev/null

else

systemctl start chronyd.service > /dev/null

echo "Started chronyd."

fi

Make sure chronyd is enabled on system startup.

systemctl enable chronyd.service

You can see how things start getting complex in the land of shell scripts! And this shell
script is still not as robust as what you get with Ansible. To maintain idempotency
and handle error conditions, you’ll have to do evenmore work with basic shell scripts
than you do with Ansible.

We could bemore terse (and demonstrate Ansible’s powerful simplicity) ignoring An-
sible’s self-documenting name parameter and shorthand key=value syntax, resulting
in the following playbook:

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 16

1 ---

2 - hosts: all

3 become: yes

4 tasks:

5 - dnf: name=chrony state=present

6 - service: name=chronyd state=started enabled=yes

Just as with code and configuration files, documentation in Ansible (e.g.
using the name parameter and/or adding comments to the YAML for
complicated tasks) is not absolutely necessary. However, I’m a firm believer
in thorough (but concise) documentation, so I always document what my
tasks will do by providing a name for each one. This also helps when you’re
running the playbooks, so you can seewhat’s going on in a human-readable
format.

Cleaning Up

Once you’re finished experimenting with the Rocky Linux Vagrant VM, you can
remove it from your system by running vagrant destroy. If you want to rebuild the
VM again, run vagrant up. If you’re like me, you’ll soon be building and rebuilding
hundreds of VMs and containers per week using Vagrant and Ansible!

Summary

Your workstation is on the path to becoming an “infrastructure-in-a-box,” and you
can now ensure your infrastructure is as well-tested as the code that runs on top of it.
With one small example, you’ve got a glimpse at the simple-yet-powerful Ansible
playbook. We’ll dive deeper into Ansible playbooks later, and we’ll also explore
Vagrant a little more as we go.

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 17

/ I have not failed, I've just found \

| 10,000 ways that won't work. (Thomas |

\ Edison) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 3 - Ad-Hoc Commands
In the previous chapter, we ended our exploration of local infrastructure testing with
Vagrant by creating a very simple Ansible playbook. Earlier still, we used a simple
ansible ad-hoc command to run a one-off command on a remote server.

We’ll dive deeper into playbooks in coming chapters; for now, we’ll explore how
Ansible helps you quickly perform common tasks on, and gather data from, one or
many servers with ad-hoc commands.

Conducting an orchestra

The number of servers managed by an individual administrator has risen dramati-
cally in the past decade, especially as virtualization and growing cloud application
usage has become standard fare. As a result, admins have had to find new ways of
managing servers in a streamlined fashion.

On any given day, a systems administrator has many tasks:

• Apply patches and updates via dnf, apt, and other package managers.
• Check resource usage (disk space, memory, CPU, swap space, network).
• Check log files.
• Manage system users and groups.
• Manage DNS settings, hosts files, etc.
• Copy files to and from servers.
• Deploy applications or run application maintenance.
• Reboot servers.
• Manage cron jobs.

Nearly all of these tasks can be (and usually are) at least partially automated—but
some often need a human touch, especially when it comes to diagnosing issues in

Chapter 3 - Ad-Hoc Commands 19

real time. And in today’s complex multi-server environments, logging into servers
individually is not a workable solution.

Ansible allows admins to run ad-hoc commands on one or hundreds of machines
at the same time, using the ansible command. In Chapter 1, we ran a couple of
commands (ping and free -m) on a server that we added to our Ansible inventory file.
This chapter will explore ad-hoc commands and multi-server environments in much
greater detail. Even if you decide to ignore the rest of Ansible’s powerful features,
you will be able to manage your servers much more efficiently after reading this
chapter.

Some of the examples in this chapter will display how you can configure
certain aspects of a server with ad-hoc commands. It is usually more
appropriate to contain all configuration within playbooks and templates,
so it’s easier to provision your servers (running the playbook the first
time) and then ensure their configuration is idempotent (you can run the
playbooks over and over again, and your servers will be in the correct state).

The examples in this chapter are for illustration purposes only, and all
might not be applicable to your environment. But even if you only used
Ansible for server management and running individual tasks against
groups of servers, and didn’t use Ansible’s playbook functionality at all,
you’d still have a great orchestration and deployment tool in Ansible!

Build infrastructure with Vagrant for testing

For the rest of this chapter, since we want to do a bunch of experimentation without
damaging any production servers, we’re going to use Vagrant’s powerful multi-
machine capabilities to configure a few servers which we’ll manage with Ansible.

Earlier, we used Vagrant to boot up one virtual machine running Rocky Linux 8.
In that example, we used all of Vagrant’s default configuration defined in the Va-
grantfile. In this example, we’ll use Vagrant’s powerful multi-machine management
features.

Chapter 3 - Ad-Hoc Commands 20

Three servers: two application, one database.

We’re going to manage three VMs: two app servers and a database server. Many
simple web applications and websites have a similar architecture, and even though
this may not reflect the vast realm of infrastructure combinations that exist, it will
be enough to highlight Ansible’s server management abilities.

To begin, create a new folder somewhere on your local drive (I like using∼/VMs/[dir]),
and create a new blank file named Vagrantfile (this is how we describe our virtual
machines to Vagrant). Open the file in your favorite editor, add the following, and
save the file:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 VAGRANTFILE_API_VERSION = "2"

5

6 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

7 # General Vagrant VM configuration.

8 config.vm.box = "geerlingguy/rockylinux8"

9 config.ssh.insert_key = false

10 config.vm.synced_folder ".", "/vagrant", disabled: true

11 config.vm.provider :virtualbox do |v|

12 v.memory = 512

13 v.linked_clone = true

14 end

15

Chapter 3 - Ad-Hoc Commands 21

16 # Application server 1.

17 config.vm.define "app1" do |app|

18 app.vm.hostname = "orc-app1.test"

19 app.vm.network :private_network, ip: "192.168.56.4"

20 end

21

22 # Application server 2.

23 config.vm.define "app2" do |app|

24 app.vm.hostname = "orc-app2.test"

25 app.vm.network :private_network, ip: "192.168.56.5"

26 end

27

28 # Database server.

29 config.vm.define "db" do |db|

30 db.vm.hostname = "orc-db.test"

31 db.vm.network :private_network, ip: "192.168.56.6"

32 end

33 end

This Vagrantfile defines the three servers we want to manage, and gives each one a
unique hostname, machine name (for VirtualBox), and IP address. For simplicity’s
sake, all three servers will be running Rocky Linux 8.

Open up a terminal window and change directory to the same folder where the
Vagrantfile you just created exists. Enter vagrant up to let Vagrant begin building
the three VMs. If you already downloaded the box while building the example from
Chapter 2, this process shouldn’t take too long—maybe 3-5 minutes.

While that’s going on, we’ll work on telling Ansible about the servers, so we can start
managing them right away.

Inventory file for multiple servers

There are many ways you can tell Ansible about the servers you manage, but the
most standard, and simplest, is to add them to an inventory file you store with your
Ansible project.

Chapter 3 - Ad-Hoc Commands 22

In the earlier examples, we specified the path to the inventory file on the command
line using -i hosts.ini. But we can avoid having to specify this path every time we
run ansible commands by specifying the path to the inventory file in an ansible.cfg
file that is also stored in the root directory of your project:

1 [defaults]

2 inventory = hosts.ini

Now, add the following to a hosts.ini file, also in the root directory of your project:

1 # Lines beginning with a # are comments, and are only included for

2 # illustration. These comments are overkill for most inventory files.

3

4 # Application servers

5 [app]

6 192.168.56.4

7 192.168.56.5

8

9 # Database server

10 [db]

11 192.168.56.6

12

13 # Group 'multi' with all servers

14 [multi:children]

15 app

16 db

17

18 # Variables that will be applied to all servers

19 [multi:vars]

20 ansible_user=vagrant

21 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

Let’s step through this example, group by group:

1. The first block puts both of our application servers into an ‘app’ group.

Chapter 3 - Ad-Hoc Commands 23

2. The second block puts the database server into a ‘db’ group.
3. The third block tells ansible to define a new group ‘multi’, with child groups,

and we add in both the ‘app’ and ‘db’ groups.
4. The fourth block adds variables to the multi group that will be applied to all

servers within multi and all its children.

We’ll dive deeper into variables, group definitions, group hierarchy, and
other Inventory file topics later. For now, we just want Ansible to know
about our servers, so we can start managing them quickly.

Save the updated inventory file, and then check to see if Vagrant has finished building
the three VMs. Once Vagrant has finished, we can start managing the servers with
Ansible.

Your first ad-hoc commands

One of the first things you need to do is to check in on your servers. Let’s make sure
they’re configured correctly, have the right time and date (we don’t want any time
synchronization-related errors in our application!), and have enough free resources
to run an application.

Many of the things we’re manually checking here should also be monitored
by an automated system on production servers; the best way to prevent
disaster is to know when it could be coming, and to fix the problem before
it happens. You should use tools like Munin, Nagios, Cacti, Hyperic, etc.
to ensure you have a good idea of your servers’ past and present resource
usage! If you’re running a website or web application available over the
Internet, you should probably also use an external monitoring solution like
Pingdom or Uptime Robot.

Discover Ansible’s parallel nature

First, I want to make sure Vagrant configured the VMs with the right hostnames. Use
ansible with the -a argument ‘hostname’ to run hostname against all the servers:

Chapter 3 - Ad-Hoc Commands 24

$ ansible multi -a "hostname"

Ansible will run this command against all three of the servers, and return the results
(if Ansible can’t reach one server, it will show an error for that server, but continue
running the command on the others).

If Ansible reports No hosts matched or returns some other inventory-
related error, you might not have your ansible.cfg file in the correct
directory, or it might not be the correct syntax. You can also try overriding
the inventory file path by setting the ANSIBLE_INVENTORY environment
variable explicitly: export ANSIBLE_INVENTORY=hosts.ini.

If you get an error like The authenticity of host '192.168.56.5' can't

be established., this is because SSH has a security feature which requires
you to confirm the server’s ‘host key’ the first time you connect. You can
type yes on the command line (in this case multiple times) to dismiss
the warning and accept the hostkey, or you can also set the environment
variable ANSIBLE_HOST_KEY_CHECKING=False. The behavior for host key
acceptance can also be configured in your SSH configuration file.

You may have noticed that the command was not run on each server in the order
you’d expect. Go ahead and run the command a few more times, and see the order:

First run results: # Second run results:

192.168.56.5 | CHANGED | rc=0 >> 192.168.56.6 | CHANGED | rc=0 >>

orc-app2.test orc-db.test

192.168.56.6 | CHANGED | rc=0 >> 192.168.56.5 | CHANGED | rc=0 >>

orc-db.test orc-app2.test

192.168.56.4 | CHANGED | rc=0 >> 192.168.56.4 | CHANGED | rc=0 >>

orc-app1.test orc-app1.test

By default, Ansible will run your commands in parallel, using multiple process forks,
so the command will complete more quickly. If you’re managing a few servers, this

Chapter 3 - Ad-Hoc Commands 25

may not be much quicker than running the command serially, on one server after
the other, but even managing 5-10 servers, you’ll notice a dramatic speedup if you
use Ansible’s parallelism (which is enabled by default).

Run the same command again, but this time, add the argument -f 1 to tell Ansible
to use only one fork (basically, to perform the command on each server in sequence):

$ ansible multi -a "hostname" -f 1

192.168.56.4 | CHANGED | rc=0 >>

orc-app1.test

192.168.56.5 | CHANGED | rc=0 >>

orc-app2.test

192.168.56.6 | CHANGED | rc=0 >>

orc-db.test

Run the same command over and over again, and it will always return results in
the same order. It’s fairly rare that you will ever need to do this, but it’s much more
frequent that you’ll want to increase the value (like -f 10, or -f 25… depending on
how much your system and network connection can handle) to speed up the process
of running commands on tens or hundreds of servers.

Most people place the target of the action (multi) before the command/ac-
tion itself (“on X servers, run Y command”), but if your brain works in the
reverse order (“run Y command on X servers”), you could put the target
after the other arguments (ansible -a "hostname" multi)—the commands
are equivalent.

Learning about your environment

Now that we trust Vagrant’s ability to set hostnames correctly, let’s make sure
everything else is in order.

First, let’s make sure the servers have disk space available for our application:

Chapter 3 - Ad-Hoc Commands 26

$ ansible multi -a "df -h"

192.168.56.6 | CHANGED | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/rl-root 19G 1014M 18G 6% /

devtmpfs 111M 0 111M 0% /dev

tmpfs 120M 0 120M 0% /dev/shm

tmpfs 120M 4.3M 115M 4% /run

tmpfs 120M 0 120M 0% /sys/fs/cgroup

/dev/sda1 497M 124M 374M 25% /boot

none 233G 217G 17G 94% /vagrant

192.168.56.5 | CHANGED | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/rl-root 19G 1014M 18G 6% /

devtmpfs 111M 0 111M 0% /dev

tmpfs 120M 0 120M 0% /dev/shm

tmpfs 120M 4.3M 115M 4% /run

tmpfs 120M 0 120M 0% /sys/fs/cgroup

/dev/sda1 497M 124M 374M 25% /boot

none 233G 217G 17G 94% /vagrant

192.168.56.4 | CHANGED | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/rl-root 19G 1014M 18G 6% /

devtmpfs 111M 0 111M 0% /dev

tmpfs 120M 0 120M 0% /dev/shm

tmpfs 120M 4.3M 115M 4% /run

tmpfs 120M 0 120M 0% /sys/fs/cgroup

/dev/sda1 497M 124M 374M 25% /boot

none 233G 217G 17G 94% /vagrant

It looks like we have plenty of room for now; our application is pretty lightweight.

Second, let’s also make sure there is enough memory on our servers:

Chapter 3 - Ad-Hoc Commands 27

$ ansible multi -a "free -m"

192.168.56.4 | CHANGED | rc=0 >>

total used free shared buff/cache available

Mem: 486 98 283 4 104 371

Swap: 1023 0 1023

192.168.56.5 | CHANGED | rc=0 >>

total used free shared buff/cache available

Mem: 486 96 285 4 104 372

Swap: 1023 0 1023

192.168.56.6 | CHANGED | rc=0 >>

total used free shared buff/cache available

Mem: 486 97 284 4 104 371

Swap: 1023 0 1023

Memory is pretty tight, but since we’re running three VMs on our localhost, we need
to be a little conservative.

Third, let’s make sure the date and time on each server is in sync:

$ ansible multi -a "date"

192.168.56.5 | CHANGED | rc=0 >>

Sat Feb 1 20:23:08 UTC 2021

192.168.56.4 | CHANGED | rc=0 >>

Sat Feb 1 20:23:08 UTC 2021

192.168.56.6 | CHANGED | rc=0 >>

Sat Feb 1 20:23:08 UTC 2021

Most applications are written with slight tolerances for per-server time jitter, but it’s
always a good idea to make sure the times on the different servers are as close as
possible, and the simplest way to do that is to use the Network Time Protocol, which
is easy enough to configure. We’ll do that next, using Ansible’s modules to make the
process painless.

Chapter 3 - Ad-Hoc Commands 28

To get an exhaustive list of all the environment details (‘facts’, in Ansible’s
lingo) for a particular server (or for a group of servers), use the command
ansible [host-or-group] -m setup. This will provide a list of every
minute bit of detail about the server (including file systems, memory, OS,
network interfaces… you name it, it’s in the list).

Make changes using Ansible modules

We want to install the chrony daemon on the server to keep the time in sync. Instead
of running the command dnf install -y chrony on each of the servers, we’ll use
ansible’s dnfmodule to do the same (just like we did in the playbook example earlier,
but this time using an ad-hoc command).

$ ansible multi -b -m dnf -a "name=chrony state=present"

You should see three ‘CHANGED’ messages, and the output from the installation
command. If you run the command again, you’ll see three ‘SUCCESS’messages, since
the package is already installed.

The -b option (alias for --become) tells Ansible to run the command with
become (basically, run commands with ‘sudo’). This will work fine with our
Vagrant VMs, but if you’re running commands against a server where your
user account requires a password for privilege escalation, you should also
pass in -K (alias for --ask-become-pass), so you can enter your password
when Ansible needs it.

Now we’ll make sure the chrony daemon is started and set to run on boot. We
could use two separate commands, systemctl start chronyd and systemctl enable

chronyd, but we’ll use Ansible’s service module instead.

$ ansible multi -b -m service -a "name=chronyd state=started \

enabled=yes"

All three servers should show a success message like:

Chapter 3 - Ad-Hoc Commands 29

"changed": true,

"enabled": true,

"name": "chronyd",

"state": "started"

If you run the exact same command again, everything will be the same, but Ansible
will report that nothing has changed, so the "changed" value becomes false.

When you use Ansible’s modules instead of plain shell commands, you can use the
powers of abstraction and idempotency offered by Ansible. Even if you’re running
shell commands, you could wrap them in Ansible’s shell or command modules (like
ansible multi -m shell -a "date"), but for these kind of commands, there’s usually
no need to use an Ansible module when running them ad-hoc.

The last thing we should do is check to make sure our servers are synced closely to
the official time on a time server:

$ ansible multi -b -a "chronyc tracking"

In my test, I was within four one-hundredths of a second on all three servers—close
enough for my purposes.

Configure groups of servers, or individual
servers

Now that we’ve been able to get all our servers to a solid baseline (e.g. all of them
at least have the correct time), we need to set up the application servers, then the
database server.

Since we set up two separate groups in our inventory file, app and db, we can target
commands to just the servers in those groups.

Configure the Application servers

Our hypothetical web application uses Django, so we need to make sure Django and
its dependencies are installed. Django is not in the official Rocky Linux dnf repository,
but we can install it using Pip:

Chapter 3 - Ad-Hoc Commands 30

$ ansible app -b -m dnf -a "name=python3-pip state=present"

$ ansible app -b -m pip -a "executable=pip3 name=django<4 state=present"

Check to make sure Django is installed and working correctly:

$ ansible app -a "python3 -m django --version"

192.168.56.5 | SUCCESS | rc=0 >>

3.1.1

192.168.56.4 | SUCCESS | rc=0 >>

3.1.1

Things look like they’re working correctly on our app servers. We can now move on
to our database server.

Almost all of the configuration we’ve done in this chapter would be much
better off in an Ansible playbook (which will be explored in greater depth
throughout the rest of this book). This chapter demonstrates how easy it
is to manage multiple servers—for whatever purpose—using Ansible. Even
if you set up and configure servers by hand using shell commands, using
Ansible will save you a ton of time and help you do everything in the most
secure and efficient manner possible.

Configure the Database servers

We configured the application servers using the app group defined in Ansible’s main
inventory, and we can configure the database server (currently the only server in the
db group) using the similarly-defined db group.

Let’s install MariaDB and start it:

Chapter 3 - Ad-Hoc Commands 31

$ ansible db -b -m dnf -a "name=mariadb-server state=present"

$ ansible db -b -m service -a "name=mariadb state=started \

enabled=yes"

And then configure the system firewall to ensure only the app servers can access the
database:

1 $ ansible db -b -m dnf -a "name=firewalld state=present"

2 $ ansible db -b -m service -a "name=firewalld state=started \

3 enabled=yes"

4 $ ansible db -b -m firewalld -a "zone=database state=present permanent=\

5 yes"

6 $ ansible db -b -m firewalld -a "source=192.168.56.0/24 \

7 zone=database state=enabled permanent=yes"

8 $ ansible db -b -m firewalld -a "port=3306/tcp zone=database \

9 state=enabled permanent=yes"

If you try connecting to the database from the app servers (or your host machine)
at this point, you won’t be able to connect, since MariaDB still needs to be set up.
Typically, you’d do this by logging into the server and running mysql_secure_-

installation. Luckily, though, Ansible can control a MariaDB server with its
assorted mysql_* modules. For now, we need to allow MySQL access for one user
from our app servers. The MySQL modules require the PyMySQL module to be
present on the managed server.

WhyMariaDB and not MySQL? RHEL 8 and Rocky Linux 8 have MariaDB
as the default supported MySQL-compatible database server. Some of the
tooling around MariaDB still uses the old ‘MySQL*’ naming syntax, but if
you’re used to MySQL, things work similarly with MariaDB.

$ ansible db -b -m dnf -a "name=python3-PyMySQL state=present"

$ ansible db -b -m mysql_user -a "name=django host=% password=12345 \

priv=*.*:ALL state=present"

Chapter 3 - Ad-Hoc Commands 32

At this point, you should be able to create or deploy a Django application on the app
servers (e.g. with django-admin startproject mysite, but we’ll get to multi-server
deployments later), then point it at the database server with the username django

and password 12345.

The MySQL configuration used here is for example/development purposes
only! There are a few other things you should do to secure a production
MySQL server, like further restricting the IP addresses allowed to access
port 3306, and other minor cleanups. Some of these things will be covered
later in this book, but, as always, you are responsible for securing your
servers—make sure you’re doing it correctly!

Make changes to just one server

Congratulations! You now have a small web application environment running
Django and MySQL. It’s not much, and there’s not even a load balancer in front
of the app servers to spread out the requests; but we’ve configured everything pretty
quickly, and without ever having to log into a server. What’s even more impressive is
that you could run any of the ansible commands again (besides a couple of the simple
shell commands), and theywouldn’t change anything—theywould return "changed":
false, giving you peace of mind that the original configuration is intact.

Now that your local infrastructure has been running a while, you notice (hypothet-
ically, of course) that the logs indicate one of the two app servers’ time has gotten
way out of sync with the others, likely because the chrony time sync daemon has
crashed or somehow been stopped. Quickly, you enter the following command to
check the status of chronyd:

$ ansible app -b -a "systemctl status chronyd"

Then, you restart the service on the affected app server:

$ ansible app -b -a "service chronyd restart" --limit "192.168.56.4"

Chapter 3 - Ad-Hoc Commands 33

In this command, we used the --limit argument to limit the command to a specific
host in the specified group. --limit will match either an exact string or a regular
expression (prefixed with ∼). The above command could be stated more simply if
you want to apply the command to only the .4 server (assuming you know there
are no other servers with the an IP address ending in .4), the following would work
exactly the same:

Limit hosts with a simple pattern (asterisk is a wildcard).

$ ansible app -b -a "service chronyd restart" --limit "*.4"

Limit hosts with a regular expression (prefix with a tilde).

$ ansible app -b -a "service chronyd restart" --limit ~".*\.4"

In these examples, we’ve been using IP addresses instead of hostnames, but in many
real-world scenarios, you’ll probably be using hostnames like nyc-dev-1.example.com;
being able to match on regular expressions is often helpful.

Try to reserve the --limit option for running commands on single servers.
If you often find yourself running commands on the same set of servers
using --limit, consider instead adding them to a group in your inventory
file. That way you can enter ansible [my-new-group-name] [command],
and save yourself a few keystrokes.

Manage users and groups

One of the most common uses for Ansible’s ad-hoc commands in my day-to-day
usage is user and group management. I don’t know how many times I’ve had to re-
read the man pages or do a Google search just to remember which arguments I need
to create a user with or without a home folder, add the user to certain groups, etc.

Ansible’s user and group modules make things pretty simple and standard across
any Linux flavor.

First, add an admin group on the app servers for the server administrators:

Chapter 3 - Ad-Hoc Commands 34

$ ansible app -b -m group -a "name=admin state=present"

The groupmodule is pretty simple; you can remove a group by setting state=absent,
set a group id with gid=[gid], and indicate that the group is a system group with
system=yes.

Now add the user johndoe to the app servers with the group I just created and
give him a home folder in /home/johndoe (the default location for most Linux
distributions). Simple:

$ ansible app -b -m user -a "name=johndoe group=admin createhome=yes"

If you want to automatically create an SSH key for the new user (if one doesn’t
already exist), you can run the same command with the additional parameter
generate_ssh_key=yes. You can also set:

• The UID of the user with uid=[uid]

• The user’s shell with shell=[shell]

• The users’s password with password=[encrypted-password]

What if you want to delete the account?

$ ansible app -b -m user -a "name=johndoe state=absent remove=yes"

You can do just about anything you could do with useradd, userdel, and usermod

using Ansible’s usermodule, except you can do it more easily. The official documen-
tation of the User module⁴⁶ explains all the possibilities in great detail.

Manage packages

We’ve already used the dnf module on our example Rocky Linux infrastructure to
ensure certain packages are installed. Ansible has a variety of package management
modules for any flavor of Linux, but there’s also a generic package module that can
be used for easier cross-platform Ansible usage.

If you want to install a generic package like git on any Debian, RHEL, Fedora,
Ubuntu, CentOS, FreeBSD, etc. system, you can use the command:

⁴⁶https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html

Chapter 3 - Ad-Hoc Commands 35

$ ansible app -b -m package -a "name=git state=present"

package works much the same as dnf, apt, and other package management modules.
Later in the book we’ll explore ways of dealing with multi-platform package
management where package names differ between OSes.

Manage files and directories

Another common use for ad-hoc commands is remote file management. Ansible
makes it easy to copy files from your host to remote servers, create directories,
manage file and directory permissions and ownership, and delete files or directories.

Get information about a file

If you need to check a file’s permissions, MD5, or owner, use Ansible’s statmodule:

$ ansible multi -m stat -a "path=/etc/environment"

This gives the same information you’d get when running the stat command, but
passes back information in JSON, which can be parsed a little more easily (or, later,
used in playbooks to conditionally do or not do certain tasks).

Copy a file to the servers

You probably use scp and/or rsync to copy files and directories to remote servers,
and while Ansible has more advanced file copy modules like rsync, most file copy
operations can be completed with Ansible’s copy module:

$ ansible multi -m copy -a "src=/etc/hosts dest=/tmp/hosts"

The src can be a file or a directory. If you include a trailing slash, only the contents of
the directory will be copied into the dest. If you omit the trailing slash, the contents
and the directory itself will be copied into the dest.

Chapter 3 - Ad-Hoc Commands 36

The copy module is perfect for single-file copies, and works very well with small
directories. When you want to copy hundreds of files, especially in very deeply-
nested directory structures, you should consider either copying then expanding an
archive of the files with Ansible’s unarchivemodule, or using Ansible’s synchronize
or rsync modules.

Retrieve a file from the servers

The fetch module works almost exactly the same as the copy module, except in
reverse. The major difference is that files will be copied down to the local dest in a
directory structure that matches the host from which you copied them. For example,
use the following command to grab the hosts file from the servers:

$ ansible multi -b -m fetch -a "src=/etc/hosts dest=/tmp"

Fetch will, by default, put the /etc/hosts file from each server into a folder in
the destination with the name of the host (in our case, the three IP addresses),
then in the location defined by src. So, the db server’s hosts file will end up in
/tmp/192.168.56.6/etc/hosts.

You can add the parameter flat=yes, and set the dest to dest=/tmp/ (add a trailing
slash), to make Ansible fetch the files directly into the /tmp directory. However,
filenames must be unique for this to work, so it’s not as useful when copying down
files from multiple hosts. Only use flat=yes if you’re copying files from a single
host.

Create directories and files

You can use the file module to create files and directories (like touch), manage
permissions and ownership on files and directories, modify SELinux properties, and
create symlinks.

Here’s how to create a directory:

Chapter 3 - Ad-Hoc Commands 37

$ ansible multi -m file -a "dest=/tmp/test mode=644 state=directory"

Here’s how to create a symlink (set state=link):

$ ansible multi -m file -a "src=/src/file dest=/dest/symlink \

state=link"

The src is the symlink’s target file, and the dest is the path where the symlink itself
should be.

Delete directories and files

You can set the state to absent to delete a file, directory, or symlink.

$ ansible multi -m file -a "dest=/tmp/test state=absent"

There are many simple ways to manage files remotely using Ansible. We’ve briefly
covered the copy and file modules here, but be sure to read the documentation for
the other file-management modules like lineinfile, ini_file, and unarchive. This
book will cover these additional modules in depth in later chapters (when dealing
with playbooks).

Run operations in the background

Some operations take quite a while (minutes or even hours). For example, when you
run dnf update or apt-get update && apt-get dist-upgrade, it could be a few
minutes before all the packages on your servers are updated.

In these situations, you can tell Ansible to run the commands asynchronously, and
poll the servers to see when the commands finish. When you’re only managing one
server, this is not really helpful, but if you have many servers, Ansible starts the
command very quickly on all your servers (especially if you set a higher --forks
value), then polls the servers for status until they’re all up to date.

To run a command in the background, you set the following options:

Chapter 3 - Ad-Hoc Commands 38

• -B <seconds>: the maximum amount of time (in seconds) to let the job run.
• -P <seconds>: the amount of time (in seconds) to wait between polling the
servers for an updated job status.

As of Ansible 2.0, asynchronous polling on the command line (via the -P

flag) no longer displays output in real time. Please follow the progress of
this bug’s resolution in the issue v2 async events are not triggered⁴⁷. For
now, you can still run jobs in the background and get job status information
separately, but you can’t see the polling status real-time.

Update servers asynchronously with asynchronous
jobs

Let’s run dnf -y update on all our servers to get them up to date. If you set -P
0, Ansible fires off the command on the servers, then prints the background job
information to the screen and exits:

$ ansible multi -b -B 3600 -P 0 -a "dnf -y update"

192.168.56.4 | CHANGED => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python"

},

"ansible_job_id": "333866395772.18507",

"changed": true,

"finished": 0,

"results_file": "/root/.ansible_async/333866395772.18507",

"started": 1

}

... [other hosts] ...

While the background task is running, you can check on the status elsewhere using
Ansible’s async_status module, as long as you have the ansible_job_id value to
pass in as jid:

⁴⁷https://github.com/ansible/ansible/issues/14681

https://github.com/ansible/ansible/issues/14681
https://github.com/ansible/ansible/issues/14681

Chapter 3 - Ad-Hoc Commands 39

$ ansible multi -b -m async_status -a "jid=169825235950.3572"

192.168.56.6 | CHANGED => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python"

},

"ansible_job_id": "761320869373.18496",

"changed": true,

"cmd": [

"dnf",

"-y",

"update"

],

"delta": "0:00:09.017121",

"end": "2019-08-23 02:32:58.727209",

"finished": 1,

"rc": 0,

"start": "2019-08-23 02:32:49.710088",

...

"stdout_lines": [

"Loaded plugins: fastestmirror",

"Determining fastest mirrors",

" * base: mirror.genesisadaptive.com",

" * extras: mirror.mobap.edu",

" * updates: mirror.mobap.edu",

"No packages marked for update"

]

}

For tasks you don’t track remotely, it’s usually a good idea to log the
progress of the task somewhere, and also send some sort of alert on
failure—especially, for example, when running backgrounded tasks that
perform backup operations, or when running business-critical database
maintenance tasks.

You can also run tasks in Ansible playbooks in the background, asynchronously,

Chapter 3 - Ad-Hoc Commands 40

by defining an async and poll parameter on the play. We’ll discuss playbook task
backgrounding in later chapters.

Check log files

Sometimes, when debugging application errors, or diagnosing outages or other
problems, you need to check server log files. Any common log file operation (like
using tail, cat, grep, etc.) works through the ansible command, with a few caveats:

1. Operations that continuously monitor a file, like tail -f, won’t work via
Ansible, because Ansible only displays output after the operation is complete,
and you won’t be able to send the Control-C command to stop following the
file. Someday, the async module might have this feature, but for now, it’s not
possible.

2. It’s not a good idea to run a command that returns a huge amount of data via
stdout via Ansible. If you’re going to cat a file larger than a few KB, you should
probably log into the server(s) individually.

3. If you redirect and filter output from a command run via Ansible, you need
to use the shell module instead of Ansible’s default command module (add -m

shell to your commands).

As a simple example, let’s view the last few lines of the messages log file on each of
our servers:

$ ansible multi -b -a "tail /var/log/messages"

As stated in the caveats, if you want to filter the messages log with something like
grep, you can’t use Ansible’s default command module, but instead, shell:

Chapter 3 - Ad-Hoc Commands 41

$ ansible multi -b -m shell -a "tail /var/log/messages | \

grep ansible-command | wc -l"

192.168.56.5 | success | rc=0 >>

12

192.168.56.4 | success | rc=0 >>

12

192.168.56.6 | success | rc=0 >>

14

This command shows how many ansible commands have been run on each server
(the numbers you get may be different).

Manage cron jobs

Periodic tasks run via cron are managed by a system’s crontab. Normally, to change
cron job settings on a server, you would log into the server, use crontab -e under
the account where the cron jobs reside, and type in an entry with the interval and
job.

Ansible makes managing cron jobs easy with its cron module. If you want to run a
shell script on all the servers every day at 4 a.m., add the cron job with:

$ ansible multi -b -m cron -a "name='daily-cron-all-servers' \

hour=4 job='/path/to/daily-script.sh'"

Ansible will assume * for all values you don’t specify (valid values are day, hour,
minute, month, and weekday). You could also specify special time values like reboot,
yearly, or monthly using special_time=[value]. You can also set the user the job
will run under via user=[user], and create a backup of the current crontab by passing
backup=yes.

What if wewant to remove the cron job? Simple enough, use the same cron command,
and pass the name of the cron job you want to delete, and state=absent:

Chapter 3 - Ad-Hoc Commands 42

$ ansible multi -b -m cron -a "name='daily-cron-all-servers' \

state=absent"

You can also use Ansible to manage custom crontab files; use the same syntax as you
used earlier, but specify the location to the cron file with: cron_file=cron_file_name
(where cron_file_name is a cron file located in /etc/cron.d).

Ansible denotes Ansible-managed crontab entries by adding a comment
on the line above the entry like #Ansible: daily-cron-all-servers. It’s
best to leave things be in the crontab itself, and always manage entries via
ad-hoc commands or playbooks using Ansible’s cron module.

Deploy a version-controlled application

For simple application deployments, where you may need to update a git checkout,
or copy a new bit of code to a group of servers, then run a command to finish the
deployment, Ansible’s ad-hoc mode can help. For more complicated deployments,
use Ansible playbooks and rolling update features (which will be discussed in later
chapters) to ensure successful deployments with zero downtime.

In the example below, I’ll assume we’re running a simple application on one
or two servers, in the directory /opt/myapp. This directory is a git repository
cloned from a central server or a service like GitHub, and application deploy-
ments and updates are done by updating the clone, then running a shell script at
/opt/myapp/scripts/update.sh.

First, update the git checkout to the application’s new version branch, 1.2.4, on all
the app servers:

$ ansible app -b -m git -a "repo=git://example.com/path/to/repo.git \

dest=/opt/myapp update=yes version=1.2.4"

Ansible’s git module lets you specify a branch, tag, or even a specific commit with the
version parameter (in this case, we chose to checkout tag 1.2.4, but if you run the

Chapter 3 - Ad-Hoc Commands 43

command again with a branch name, like prod, Ansible will happily do that instead).
To force Ansible to update the checked-out copy, we passed in update=yes. The repo
and dest options should be self-explanatory.

If you get a message saying “Failed to find required executable git”, you
will need to install Git on the server. To do so, run the ad-hoc command
ansible app -b -m package -a "name=git state=present".

If you get a message saying the Git server has an “unknown hostkey”, add
the option accept_hostkey=yes to the command, or add the hostkey to your
server’s known_hosts file before running this command.

Then, run the application’s update.sh shell script:

$ ansible app -b -a "/opt/myapp/scripts/update.sh"

Ad-hoc commands are fine for the simple deployments (like our example above), but
you should use Ansible’s more powerful and flexible application deployment features
described later in this book if you have complex application or infrastructure needs.
See especially the ‘Rolling Updates’ section later in this book.

Ansible’s SSH connection history

One of Ansible’s greatest features is its ability to function without running any extra
applications or daemons on the servers it manages. Instead of using a proprietary
protocol to communicate with the servers, Ansible uses the standard and secure SSH
connection that is commonly used for basic administration on almost every Linux
server running today.

Since a stable, fast, and secure SSH connection is the heart of Ansible’s communica-
tion abilities, Ansible’s implementation of SSH has continually improved throughout
the past few years—and is still improving today.

One thing that is universal to all of Ansible’s SSH connection methods is that Ansible
uses the connection to transfer one or a few files defining a play or command to the
remote server, then runs the play/command, then deletes the transferred file(s), and
reports back the results. A fast, stable, and secure SSH connection is of paramount
importance to Ansible.

Chapter 3 - Ad-Hoc Commands 44

Paramiko

In the beginning, Ansible used paramiko—an open source SSH2 implementation for
Python—exclusively. However, as a single library for a single language (Python),
development of paramiko doesn’t keep pace with development of OpenSSH (the
standard implementation of SSH used almost everywhere), and its performance and
security is slightly worse than OpenSSH.

Ansible continues to support the use of paramiko, and even chooses it as the default
for systems (like RHEL 6) which don’t support ControlPersist—an option present
only in OpenSSH 5.6 or newer. (ControlPersist allows SSH connections to persist so
frequent commands run over SSH don’t have to go through the initial handshake
over and over again until the ControlPersist timeout set in the server’s SSH config
is reached.)

OpenSSH (default)

In Ansible 1.3, Ansible defaulted to using native OpenSSH connections to connect
to servers supporting ControlPersist. Ansible had this ability since version 0.5, but
didn’t default to it until 1.3.

Most local SSH configuration parameters (like hosts, key files, etc.) are respected, but
if you need to connect via a port other than port 22 (the default SSH port), you should
specify the port in an inventory file (ansible_ssh_port option) or when running
ansible commands.

OpenSSH is faster, and a little more reliable, than paramiko, but there are ways to
make Ansible faster still.

Faster OpenSSH with Pipelining

Modern versions of Ansible allow you to improve on the performance of Ansible’s
default OpenSSH implementation.

Instead of copying files, running them on the remote server, then removing them, the
‘pipelining’ method of OpenSSH transfer will send and execute commands for most
Ansible modules directly over the SSH connection.

Chapter 3 - Ad-Hoc Commands 45

This method of connection can be enabled by adding pipelining=True under the
[ssh_connection] section of the Ansible configuration file (ansible.cfg, which will
be covered in more detail later).

The pipelining=True configuration option won’t help much unless
you have removed or commented the Defaults requiretty option in
/etc/sudoers. This is commented out in the default configuration for most
OSes, but you might want to double-check this setting to make sure you’re
getting the fastest connection possible!

If you’re running a recent version of macOS, Ubuntu, Windows with
Cygwin, or most other OS for the host from which you run ansible and
ansible-playbook, you should be running OpenSSH version 5.6 or later,
which works perfectly with the ControlPersist setting used with all of
Ansible’s SSH connections settings.

If the host on which Ansible runs has RHEL or a derivative, you might
need to update your version of OpenSSH so it supports the faster/persistent
connection method. Any OpenSSH version 5.6 or greater should work.
To install a later version, either compile from source, or use a different
repository (like CentALT⁴⁸ and dnf update openssh.

Summary

In this chapter, you learned how to build a multi-server infrastructure for testing on
your local workstation using Vagrant, and you configured, monitored, and managed
the infrastructure without ever logging in to an individual server. You also learned
how Ansible connects to remote servers, and how to use the ansible command to
perform tasks on many servers quickly in parallel, or one by one.

By now, you should be getting familiar with the basics of Ansible, and you should
be able to start managing your own infrastructure more efficiently.

⁴⁸http://mirror.neu.edu.cn/CentALT/readme.txt

http://mirror.neu.edu.cn/CentALT/readme.txt
http://mirror.neu.edu.cn/CentALT/readme.txt

Chapter 3 - Ad-Hoc Commands 46

/ It's easier to seek forgiveness than \

\ ask for permission. (Proverb) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 4 - Ansible Playbooks
Power plays

Like many other configuration management solutions, Ansible uses a metaphor to
describe its configuration files. They are called ‘playbooks’, and they list sets of tasks
(‘plays’ in Ansible parlance) that will be run against a particular server or set of
servers. In American football, a team follows a set of pre-written playbooks as the
basis for a bunch of plays they execute to try to win a game. In Ansible, you write
playbooks (a list of instructions describing the steps to bring your server to a certain
configuration state) that are then played on your servers.

Playbooks are written in YAML⁴⁹, a simple human-readable syntax popular for
defining configuration. Playbooks may be included within other playbooks, and
certain metadata and options cause different plays or playbooks to be run in different
scenarios on different servers.

Ad-hoc commands alone make Ansible a powerful tool; playbooks turn Ansible into
a top-notch server provisioning and configuration management tool.

What attracts most DevOps personnel to Ansible is the fact that it is easy to convert
shell scripts (or one-off shell commands) directly into Ansible plays. Consider the
following script, which installs Apache on a RHEL/CentOS server:

Shell Script

⁴⁹https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Chapter 4 - Ansible Playbooks 48

1 # Install Apache.

2 dnf install --quiet -y httpd httpd-devel

3 # Copy configuration files.

4 cp httpd.conf /etc/httpd/conf/httpd.conf

5 cp httpd-vhosts.conf /etc/httpd/conf/httpd-vhosts.conf

6 # Start Apache and configure it to run at boot.

7 service httpd start

8 chkconfig httpd on

To run the shell script (in this case, a file named shell-script.sh with the contents
as above), you would call it directly from the command line:

(From the same directory in which the shell script resides).

$./shell-script.sh

Ansible Playbook

1 ---

2 - hosts: all

3

4 tasks:

5 - name: Install Apache.

6 command: dnf install --quiet -y httpd httpd-devel

7 - name: Copy configuration files.

8 command: >

9 cp httpd.conf /etc/httpd/conf/httpd.conf

10 - command: >

11 cp httpd-vhosts.conf /etc/httpd/conf/httpd-vhosts.conf

12 - name: Start Apache and configure it to run at boot.

13 command: service httpd start

14 - command: chkconfig httpd on

To run the Ansible Playbook (in this case, a file named playbook.yml with the
contents as above), you would call it using the ansible-playbook command:

Chapter 4 - Ansible Playbooks 49

(From the same directory in which the playbook resides).

$ ansible-playbook playbook.yml

Ansible is powerful in that you quickly transition to using playbooks if you know
how to write standard shell commands—the same commands you’ve been using for
years—and then as you get time, rebuild your configuration to take advantage of
Ansible’s helpful features.

In the above playbook, we use Ansible’s command module to run standard shell
commands. We’re also giving each task a ‘name’, so when we run the playbook, the
task has human-readable output on the screen or in the logs. The command module
has some other tricks up its sleeve (which we’ll see later), but for now, be assured
shell scripts are translated directly into Ansible playbooks without much hassle.

The greater-than sign (>) immediately following the command: module
directive tells YAML “automatically quote the next set of indented lines
as one long string, with each line separated by a space”. It helps improve
task readability in some cases. There are different ways of describing
configuration using valid YAML syntax, and these methods are discussed
in-depth in the YAML Conventions and Best Practices section in Appendix
B.

This book uses three different task-formatting techniques: For tasks which
require one or two simple parameters, Ansible’s shorthand syntax (e.g. dnf:
name=apache2 state=present) is used. For most uses of command or shell,
where longer commands are entered, the > technique mentioned above is
used. For tasks which require many parameters, YAML object notation
is used—placing each key and variable on its own line. This assists with
readability and allows for version control systems to easily distinguish
changes line-by-line.

The above playbook will perform exactly like the shell script, but you can improve
things greatly by using some of Ansible’s built-in modules to handle the heavy lifting:

Revised Ansible Playbook - Now with idempotence!

Chapter 4 - Ansible Playbooks 50

1 ---

2 - hosts: all

3 become: yes

4

5 tasks:

6 - name: Install Apache.

7 dnf:

8 name:

9 - httpd

10 - httpd-devel

11 state: present

12

13 - name: Copy configuration files.

14 copy:

15 src: "{{ item.src }}"

16 dest: "{{ item.dest }}"

17 owner: root

18 group: root

19 mode: 0644

20 with_items:

21 - src: httpd.conf

22 dest: /etc/httpd/conf/httpd.conf

23 - src: httpd-vhosts.conf

24 dest: /etc/httpd/conf/httpd-vhosts.conf

25

26 - name: Make sure Apache is started now and at boot.

27 service:

28 name: httpd

29 state: started

30 enabled: yes

Now we’re getting somewhere. Let me walk you through this simple playbook:

1. The first line, ---, is how we mark this document as using YAML syntax (like
using <html> at the top of an HTML document, or <?php at the top of a block
of PHP code).

Chapter 4 - Ansible Playbooks 51

2. The second line, - hosts: all defines the first (and in this case, only) play, and
tells Ansible to run the play on all hosts that it knows about.

3. The third line, become: yes tells Ansible to run all the commands through sudo,
so the commands will be run as the root user.

4. The fifth line, tasks:, tells Ansible that what follows is a list of tasks to run as
part of this play.

5. The first task begins with name: Install Apache.. name is not a module that
does something to your server; rather, it’s a way of giving a human-readable
description to the task that follows. Seeing “Install Apache” is more relevant
than seeing “dnf name=httpd state=present”… but if you drop the name line
completely, that won’t cause any problem.

• We use the dnf module to install Apache. Instead of the command dnf -y

install httpd httpd-devel, we can describe to Ansible exactly what we
want. Ansible will take the list of packages we provide. We tell dnf to make
sure the packages are installed with state: present, but we could also use
state: latest to ensure the latest version is installed, or state: absent

to make sure the packages are not installed.
6. The second task again starts with a human-readable name (which could be left

out if you’d like).
• We use the copy module to copy files from a source (on our local work-
station) to a destination (the server being managed). We could also pass
in more variables, like file metadata including ownership and permissions
(owner, group, and mode).

• Ansible allows lists of variables to be passed into tasks using with_items:
Define a list of items and each one will be passed into the play, referenced
using the item variable (e.g. {{ item }}).

• In this case, we are using a list of items containing dicts (dictionaries) used
for variable substitution; to define each element in a list of dicts with each
list item in the format:

- var1: value

var2: value

The list can have as many variables as you want, even deeply-nested dicts.
When you reference the variables in the play, you use a dot to access the
variable within the item, so {{ item.var1 }}would access the first variable.
In our example, item.src accesses the src in each item.

Chapter 4 - Ansible Playbooks 52

7. The third task also uses a name to describe it in a human-readable format.
• We use the service module to describe the desired state of a particular
service, in this case httpd, Apache’s http daemon.Wewant it to be running,
so we set state: started, and we want it to run at system startup, so we
say enabled: yes (the equivalent of running chkconfig httpd on).

With this playbook format, Ansible can keep track of the state of everything on all
our servers. If you run the playbook the first time, it will provision the server by
ensuring Apache is installed and running, and your custom configuration is in place.

Even better, the second time you run it (if the server is in the correct state), it won’t
actually do anything besides tell you nothing has changed. So, with this one short
playbook, you’re able to provision and ensure the proper configuration for an Apache
web server. Additionally, running the playbook with the --check option (see the next
section below) verifies the configuration matches what’s defined in the playbook,
without actually running the tasks on the server.

If you ever want to update your configuration, or install another httpd package, either
update the configuration file locally or add a package to the name list for dnf and
run the playbook again. Whether you have one or a thousand servers, all of their
configurations will be updated to match your playbook—and Ansible will tell you if
anything ever changes (you’re not making ad-hoc changes on individual production
servers, are you?).

Running Playbooks with ansible-playbook

If we run the playbooks in the examples above (which are set to run on all hosts),
then the playbook would be run against every host defined in your Ansible inventory
file (see Chapter 1’s basic inventory file example).

Limiting playbooks to particular hosts and groups

You can limit a playbook to specific groups or individual hosts by changing the
hosts: definition. The value can be set to all hosts, a group of hosts defined in your
inventory, multiple groups of hosts (e.g. webservers,dbservers), individual hosts

Chapter 4 - Ansible Playbooks 53

(e.g. atl.example.com), or a mixture of hosts. You can even do wild card matches,
like *.example.com, to match all subdomains of a top-level domain.

You can also limit the hosts on which the playbook is run via the ansible-playbook
command:

$ ansible-playbook playbook.yml --limit webservers

In this case (assuming your inventory file contains a webservers group), even if the
playbook is set to hosts: all, or includes hosts in addition to what’s defined in the
webservers group, it will only be run on the hosts defined in webservers.

You could also limit the playbook to one particular host:

$ ansible-playbook playbook.yml --limit xyz.example.com

If you want to see a list of hosts that would be affected by your playbook before you
actually run it, use --list-hosts:

$ ansible-playbook playbook.yml --list-hosts

Running this should give output like:

playbook: playbook.yml

play #1 (all): host count=4

127.0.0.1

192.168.24.2

foo.example.com

bar.example.com

(Where count is the count of servers defined in your inventory, and following is a
list of all the hosts defined in your inventory).

Chapter 4 - Ansible Playbooks 54

Setting user and sudo options with ansible-playbook

If no remote_user is defined alongside the hosts in a playbook, Ansible assumes
you’ll connect as the user defined in your inventory file for a particular host, and
then will fall back to your local user account name. You can explicitly define a remote
user to use for remote plays using the --user (-u) option:

$ ansible-playbook playbook.yml --user=johndoe

In some situations, you will need to pass along your sudo password to the remote
server to perform commands via sudo. In these situations, you’ll need use the
--ask-become-pass (-K) option. You can also explicitly force all tasks in a playbook
to use sudo with --become (-b). Finally, you can define the sudo user for tasks run
via sudo (the default is root) with the --become-user option.

For example, the following command will run our example playbook with sudo,
performing the tasks as the sudo user janedoe, and Ansible will prompt you for the
sudo password:

$ ansible-playbook playbook.yml --become --become-user=janedoe \

--ask-become-pass

If you’re not using key-based authentication to connect to your servers (read my
warning about the security implications of doing so in Chapter 1), you can use
--ask-pass.

Other options for ansible-playbook

The ansible-playbook command also allows for some other common options:

• --inventory=PATH (-i PATH): Define a custom inventory file (default is the
default Ansible inventory file, usually located at /etc/ansible/hosts).

• --verbose (-v): Verbose mode (show all output, including output from success-
ful options). You can pass in -vvvv to give every minute detail.

• --extra-vars=VARS (-e VARS): Define variables to be used in the playbook, in
"key=value,key=value" format.

Chapter 4 - Ansible Playbooks 55

• --forks=NUM (-f NUM): Number for forks (integer). Set this to a number higher
than 5 to increase the number of servers on which Ansible will run tasks
concurrently.

• --connection=TYPE (-c TYPE): The type of connection which will be used (this
defaults to ssh; you might sometimes want to use local to run a playbook on
your local machine, or on a remote server via cron).

• --check: Run the playbook in Check Mode (‘Dry Run’); all tasks defined in the
playbook will be checked against all hosts, but none will actually be run.

There are some other options and configuration variables that are important to get
the most out of ansible-playbook, but this should be enough to get you started
running the playbooks in this chapter on your own servers or virtual machines.

The rest of this chapter uses more realistic Ansible playbooks. All the
examples in this chapter are in the Ansible for DevOps GitHub repository⁵⁰,
and you can clone that repository to your computer (or browse the
code online) to follow along more easily. The GitHub repository includes
Vagrantfiles with each example, so you can build the servers on your local
host using Vagrant.

Real-world playbook: Rocky Linux Node.js app
server

The first example, while being helpful for someone who might want to post a simple
static web page to a clunky old Apache server, is not a good representation of a
real-world scenario. I’m going to run through more complex playbooks that do
many different things, most of which are actually being used to manage production
infrastructure today.

The first playbook will configure a Rocky Linux server with Node.js, and install and
start a simple Node.js application. The server will have a very simple architecture:

⁵⁰https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 4 - Ansible Playbooks 56

Node.js app on Rocky Linux.

To start things off, we need to create a YAML file (playbook.yml in this example) to
contain our playbook. Let’s keep things simple:

1 ---

2 - hosts: all

3 become: yes

4

5 vars:

6 node_apps_location: /usr/local/opt/node

7

8 tasks:

First, define a set of hosts (all) on which this playbook will be run (see the section
above about limiting the playbook to particular groups and hosts), then tell Ansible to
run the playbook with root privileges (since we need to install and configure system
packages).

Next, we can define vars (playbook variables) directly in the playbook; in this case,
we are adding the node_apps_location variable so we can use that to identify where
our Node.js apps will be located.

Finally, the playbook will need to do something on the hosts, so we add a tasks

section which we’ll fill in soon.

Chapter 4 - Ansible Playbooks 57

Add extra repositories

Adding extra package repositories (dnf or apt) is one thing many admins will do
before any other work on a server to ensure that certain packages are available, or
are at a later version than the ones in the base installation.

In the shell script below, we want to add both the EPEL and Remi repositories, so
we can get some packages like Node.js or later versions of other necessary software
(these examples presume you’re running Rocky Linux as the root user):

1 # Install EPEL repo.

2 dnf install -y epel-release

3

4 # Import Remi GPG key.

5 wget https://rpms.remirepo.net/RPM-GPG-KEY-remi2018 \

6 -O /etc/pki/rpm-gpg/RPM-GPG-KEY-remi2018

7 rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-remi2018

8

9 # Install Remi repo.

10 rpm -Uvh --quiet \

11 https://rpms.remirepo.net/enterprise/remi-release-8.rpm

12

13 # Install Node.js (npm plus all its dependencies).

14 dnf --enablerepo=epel -y install npm

This shell script uses the rpm command to install the EPEL repository, import the
Remi repository GPG keys, add the Remi repository, and finally install Node.js. It
works okay for a simple deployment (or by hand), but it’s silly to run all these
commands (some of which could take time or stop your script entirely if your
connection is flaky or bad) if the result has already been achieved (namely, two
repositories and their GPG keys have been added).

Chapter 4 - Ansible Playbooks 58

If you wanted to skip a couple steps, you could skip adding the GPG keys,
and just run your commands with --nogpgcheck (or, in Ansible, set the
disable_gpg_check parameter of the dnf module to yes), but it’s a good
idea to leave this enabled. GPG stands for GNU Privacy Guard, and it’s
a way that developers and package distributors can sign their packages
(so you know it’s from the original author, and hasn’t been modified
or corrupted). Unless you really know what you’re doing, don’t disable
security settings like GPG key checks.

Ansible makes things a little more robust. Even though the following is slightly more
verbose, it performs the same actions in a more structured way, which is simpler to
understand, and works with variables and other nifty Ansible features we’ll discuss
later:

9 - name: Install EPEL repo.

10 dnf: name=epel-release state=present

11

12 - name: Import Remi GPG key.

13 rpm_key:

14 key: "https://rpms.remirepo.net/RPM-GPG-KEY-remi2018"

15 state: present

16

17 - name: Install Remi repo.

18 dnf:

19 name: "https://rpms.remirepo.net/enterprise/remi-release-8.rpm"

20 state: present

21

22 - name: Ensure firewalld is stopped (since this is for testing).

23 service: name=firewalld state=stopped

24

25 - name: Install Node.js and npm.

26 dnf: name=npm state=present enablerepo=epel

27

28 - name: Install Forever (to run our Node.js app).

29 npm: name=forever global=yes state=present

Let’s walk through this playbook step-by-step:

Chapter 4 - Ansible Playbooks 59

1. dnf installs the EPEL repository (and automatically imports its GPG key).
2. rpm_key is a very simple Ansible module that takes and imports an RPM key

from a URL or file, or the key id of a key that is already present, and ensures
the key is either present or absent (the state parameter). We’re importing one
key, for Remi’s repository.

3. We can install extra dnf repositories using the dnfmodule. Just pass in the URL
to the repo .rpm file, and Ansible will take care of the rest.

4. Since this server is being used only for test purposes, we disable the system
firewall so it won’t interfere with testing (using the service module).

5. dnf installs Node.js (along with all the required packages for npm, Node’s
package manager) if it’s not present, and allows the EPEL repo to be searched
via the enablerepo parameter (you could also explicitly disable a repository
using disablerepo).

6. Since NPM is now installed, we use Ansible’s npm module to install a Node.js
utility, forever, to launch our app and keep it running. Setting global to yes

tells NPM to install the forever node module in /usr/lib/node_modules/ so it
will be available to all users and Node.js apps on the system.

We’re beginning to have a nice little Node.js app server set up. Let’s set up a little
Node.js app that responds to HTTP requests on port 80.

You may be wondering why sometimes quotes are used in these YAML
playbooks, and sometimes not. I typically use quotes aroundmy parameters
in the following scenarios:

1. If I have a Jinja variable (e.g. {{ variable_here }}) at the beginning
or end of the line; otherwise YAML will parse the line as nested
objects due to the braces.

2. If there are any colons (:) in the string (e.g. for URLs).

The easiest way to make sure you’re quoting things correctly is to use
YAML syntax highlighting in your code editor.

Chapter 4 - Ansible Playbooks 60

Deploy a Node.js app

The next step is to install a simple Node.js app on our server. First, we’ll create a
really simple Node.js app by creating a new folder, app, in the same folder as your
playbook.yml. Create a new file, app.js, in this folder, with the following contents:

1 // Load the express module.

2 var express = require('express');

3 var app = express();

4

5 // Respond to requests for / with 'Hello World'.

6 app.get('/', function(req, res){

7 res.send('Hello World!');

8 });

9

10 // Listen on port 80 (like a true web server).

11 app.listen(80, () => console.log('Express server started successfully.'\

12));

Don’t worry about the syntax or the fact that this is Node.js. We just need a quick
example to deploy. This example could’ve been written in Python, Perl, Java, PHP,
or another language, but since Node is a simple language (JavaScript) that runs
in a lightweight environment, it’s an easy language to use when testing things or
prodding your server.

Since this little app is dependent on Express (an http framework for Node), we also
need to tell NPM about this dependency via a package.json file in the same folder
as app.js:

Chapter 4 - Ansible Playbooks 61

1 {

2 "name": "examplenodeapp",

3 "description": "Example Express Node.js app.",

4 "author": "Jeff Geerling <geerlingguy@mac.com>",

5 "dependencies": {

6 "express": "4.x"

7 },

8 "engine": "node >= 10.0.2"

9 }

We need to copy the entire app to the server, and then have NPM download the
required dependencies (in this case, express), so add these tasks to your playbook:

31 - name: Ensure Node.js app folder exists.

32 file: "path={{ node_apps_location }} state=directory"

33

34 - name: Copy example Node.js app to server.

35 copy: "src=app dest={{ node_apps_location }}"

36

37 - name: Install app dependencies defined in package.json.

38 npm: path={{ node_apps_location }}/app

First, we ensure the directory where our app will be installed exists, using the file
module.

The {{ node_apps_location }} variable used in these tasks was defined
under a vars section at the top of our playbook, but it could also be
overridden in your inventory, or on the command line when calling
ansible-playbook using the --extra-vars option.

Second, we copy the entire app folder up to the server, using Ansible’s copy command,
which intelligently distinguishes between a single file or a directory of files, and
recurses through the directory, similar to recursive scp or rsync.

Chapter 4 - Ansible Playbooks 62

Ansible’s copy module works very well for single or small groups of
files, and recurses through directories automatically. If you are copying
hundreds of files, or deeply-nested directory structures, copy will get
bogged down. In these situations, consider either using the synchronize

or rsync module to copy a full directory, or unarchive to copy an archive
and have it expanded in place on the server.

Third, we use npm again, this time, with no extra arguments besides the path to the
app. This tells NPM to parse the package.json file and ensure all the dependencies
are present.

We’re almost finished! The last step is to start the app.

Launch a Node.js app

We’ll now use forever (which we installed earlier) to start the app.

41 - name: Check list of running Node.js apps.

42 command: /usr/local/bin/forever list

43 register: forever_list

44 changed_when: false

45

46 - name: Start example Node.js app.

47 command: "/usr/local/bin/forever start {{ node_apps_location }}/a\

48 pp/app.js"

49 when: "forever_list.stdout.find(node_apps_location + \

50 '/app/app.js') == -1"

In the first task, we’re doing two new things:

1. register creates a new variable, forever_list, to be used in the next task to
determine when to run the task. register stashes the output (stdout, stderr) of
the defined command in the variable name passed to it.

2. changed_when tells Ansible explicitly when this task results in a change to the
server. In this case, we know the forever list command will never change
the server, so we just say false—the server will never be changed when the
command is run.

Chapter 4 - Ansible Playbooks 63

The second task actually starts the app, using Forever. We could also start the app
by calling node {{ node_apps_location }}/app/app.js, but we would not be able
to control the process easily, and we would also need to use nohup and & to avoid
Ansible hanging on this task.

Forever tracks the Node apps it manages, and we use Forever’s list option to print
a list of running apps. The first time we run this playbook, the list will obviously
be empty—but on future runs, if the app is running, we don’t want to start another
instance of it. To avoid that situation, we tell Ansible when we want to start the app
with when. Specifically, we tell Ansible to start the app only when the app’s path is
not in the forever list output.

Node.js app server summary

At this point, you have a complete playbook that will install a simple Node.js app
which responds to HTTP requests on port 80 with “Hello World!”.

To run the playbook on a server (in our case, we could just set up a new VirtualBox
VM for testing, either via Vagrant or manually), use the following command (pass in
the node_apps_location variable via the command):

$ ansible-playbook playbook.yml \

--extra-vars="node_apps_location=/usr/local/opt/node"

Once the playbook has finished configuring the server and deploying your app, visit
http://hostname/ in a browser (or use curl or wget to request the site), and you
should see the following:

Node.js Application home page.

Simple, but very powerful. We’ve configured an entire Node.js application server In
fewer than fifty lines of YAML!

Chapter 4 - Ansible Playbooks 64

The entire example Node.js app server playbook is in this book’s code
repository at https://github.com/geerlingguy/ansible-for-devops⁵¹, in the
nodejs directory.

Real-world playbook: Ubuntu LAMP server
with Drupal

At this point, you should be getting comfortable with Ansible playbooks and the
YAML syntax used to define them. Up to this point, most examples have assumed
you’re working with a Fedora or RHEL-derivative server. Ansible plays nicely with
other flavors of Linux and BSD-like systems as well. In the following example, we’re
going to set up a traditional LAMP (Linux, Apache, MySQL, and PHP) server using
Ubuntu to run a Drupal website.

Drupal LAMP server.

Include a variables file, and discover pre_tasks and
handlers

To make our playbook more efficient and readable, let’s begin the playbook (named
playbook.yml) by instructing Ansible to load in variables from a separate vars.yml
file:

⁵¹https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 4 - Ansible Playbooks 65

1 ---

2 - hosts: all

3 become: yes

4

5 vars_files:

6 - vars.yml

Using one or more included variable files cleans up your main playbook file, and lets
you organize all your configurable variables in one place. At the moment, we don’t
have any variables to add; we’ll define the contents of vars.yml later. For now, create
the empty file, and continue on to the next section of the playbook, pre_tasks:

8 pre_tasks:

9 - name: Update apt cache if needed.

10 apt: update_cache=yes cache_valid_time=3600

Ansible lets you run tasks before or after the main tasks (defined in tasks:) or
roles (defined in roles:—we’ll get to roles later) using pre_tasks and post_tasks,
respectively. In this case, we need to ensure that our apt cache is updated before
running the rest of the playbook, so we have the latest package versions on our server.
We use Ansible’s apt module and tell it to update the cache if it’s been more than
3600 seconds (1 hour) since the last update.

With that out of the way, we’ll add another new section to our playbook, handlers:

12 handlers:

13 - name: restart apache

14 service: name=apache2 state=restarted

handlers are special kinds of tasks you run at the end of a play by adding the notify
option to any of the tasks in that group. The handler will only be called if one of the
tasks notifying the handler makes a change to the server (and doesn’t fail), and it will
only be notified at the end of the play.

To call this handler from a task, add the option notify: restart apache to any task
in the play. We’ve defined this handler so we can restart the apache2 service after a
configuration change, which will be explained below.

Chapter 4 - Ansible Playbooks 66

Just like variables, handlers and tasks may be placed in separate files and
included in your playbook to keep things tidy (we’ll discuss this in chapter
6). For simplicity’s sake, though, the examples in this chapter are shown
as in a single playbook file. We’ll discuss different playbook organization
methods later.

By default, Ansible will stop all playbook execution when a task fails, and
won’t notify any handlers that may need to be triggered. In some cases, this
leads to unintended side effects. If you want to make sure handlers always
run after a task uses notify to call the handler, even in case of playbook
failure, add --force-handlers to your ansible-playbook command.

Basic LAMP server setup

The first step towards building an application server that depends on the LAMP stack
is to build the actual LAMP part of it. This is the simplest process, but still requires
a little extra work for our particular server. We want to install Apache, MySQL and
PHP, but we’ll also need a couple other dependencies.

16 tasks:

17 - name: Get software for apt repository management.

18 apt:

19 state: present

20 name:

21 - python3-apt

22 - python3-pycurl

23

24 - name: Add ondrej repository for later versions of PHP.

25 apt_repository: repo='ppa:ondrej/php' update_cache=yes

26

27 - name: "Install Apache, MySQL, PHP, and other dependencies."

28 apt:

29 state: present

30 name:

Chapter 4 - Ansible Playbooks 67

31 - acl

32 - git

33 - curl

34 - unzip

35 - sendmail

36 - apache2

37 - php8.2-common

38 - php8.2-cli

39 - php8.2-dev

40 - php8.2-gd

41 - php8.2-curl

42 - php8.2-opcache

43 - php8.2-xml

44 - php8.2-mbstring

45 - php8.2-pdo

46 - php8.2-mysql

47 - php8.2-apcu

48 - libpcre3-dev

49 - libapache2-mod-php8.2

50 - python3-mysqldb

51 - mysql-server

52

53 - name: Disable the firewall (since this is for local dev only).

54 service: name=ufw state=stopped

55

56 - name: "Start Apache, MySQL, and PHP."

57 service: "name={{ item }} state=started enabled=yes"

58 with_items:

59 - apache2

60 - mysql

In this playbook, we begin with a common LAMP setup:

1. Install a couple helper libraries which allow Python to manage apt more pre-
cisely (python3-apt and python3-pycurl are required for the apt_repository

module to do its work).

Chapter 4 - Ansible Playbooks 68

2. Install an extra apt PPA that will allow installation of a later version of PHP
than is available in the default system repositories.

3. Install all the required packages for our LAMP server (including all the PHP
extensions Drupal requires).

4. Disable the firewall entirely, for testing purposes. If on a production server or
any server exposed to the Internet, you should instead have a restrictive firewall
only allowing access on ports 22, 80, 443, and other necessary ports.

5. Start up all the required services, and make sure they’re enabled to start on
system boot.

Configure Apache

The next step is configuring Apache so it will work correctly with Drupal. Out of the
box, Apachemay not havemod_rewrite enabled. To remedy that situation, you could
use the command sudo a2enmod rewrite, but Ansible has a handy apache2_module

module that will do the same thing with idempotence.

We also need to add a VirtualHost entry to give Apache the site’s document root and
provide other options for the site.

63 - name: Enable Apache rewrite module (required for Drupal).

64 apache2_module: name=rewrite state=present

65 notify: restart apache

66

67 - name: Add Apache virtualhost for Drupal.

68 template:

69 src: "templates/drupal.test.conf.j2"

70 dest: "/etc/apache2/sites-available/{{ domain }}.test.conf"

71 owner: root

72 group: root

73 mode: 0644

74 notify: restart apache

75

76 - name: Enable the Drupal site.

77 command: >

78 a2ensite {{ domain }}.test

Chapter 4 - Ansible Playbooks 69

79 creates=/etc/apache2/sites-enabled/{{ domain }}.test.conf

80 notify: restart apache

81

82 - name: Disable the default site.

83 command: >

84 a2dissite 000-default

85 removes=/etc/apache2/sites-enabled/000-default.conf

86 notify: restart apache

The first command enables all the required Apache modules by symlinking them
from /etc/apache2/mods-available to /etc/apache2/mods-enabled.

The second command copies a Jinja template we define inside a templates folder to
Apache’s sites-available folder, with the correct owner and permissions. Addition-
ally, we notify the restart apache handler, because copying in a new VirtualHost
means Apache needs to be restarted to pick up the change.

Let’s look at our Jinja template (denoted by the extra .j2 on the end of the filename),
drupal.test.conf.j2:

1 <VirtualHost *:80>

2 ServerAdmin webmaster@localhost

3 ServerName {{ domain }}.test

4 ServerAlias www.{{ domain }}.test

5 DocumentRoot {{ drupal_core_path }}/web

6 <Directory "{{ drupal_core_path }}/web">

7 Options FollowSymLinks Indexes

8 AllowOverride All

9 </Directory>

10 </VirtualHost>

This is a fairly standard Apache VirtualHost definition, but we have a few Jinja
template variables mixed in. The syntax for printing a variable in a Jinja template is
the same syntax we use in our Ansible playbooks—two brackets around the variable’s
name (like so: {{ variable }}).

There are two variables we will need (drupal_core_path and domain), so add them
to the empty vars.yml file we created earlier:

Chapter 4 - Ansible Playbooks 70

1 ---

2 # The path where Drupal will be downloaded and installed.

3 drupal_core_path: "/var/www/drupal"

4

5 # The resulting domain will be [domain].test (with .test appended).

6 domain: "drupal"

Now, when Ansible reaches the play that copies this template into place, the Jinja
template will have the variable names replaced with the values /var/www/drupal

and drupal (or whatever values you’d like!).

The last two tasks (lines 76-86) enable the VirtualHost we just added, and remove the
default VirtualHost definition, which we no longer need.

At this point, you could start the server, but Apache will likely throw an error since
the VirtualHost you’ve defined doesn’t exist (there’s no directory at {{ drupal_-

core_path }}/web yet!). This is why using notify is important—instead of adding a
task after these three steps to restart Apache (which will fail the first time you run the
playbook), notify will wait until after we’ve finished all the other steps in our main
group of tasks (giving us time to finish setting up the server), then restart Apache.

Configure PHP with lineinfile

We briefly mentioned lineinfile earlier in the book, when discussing file manage-
ment and ad-hoc task execution. Modifying PHP’s configuration is a perfect way to
demonstrate lineinfile’s simplicity and usefulness:

88 - name: Adjust OpCache memory setting.

89 lineinfile:

90 dest: "/etc/php/8.2/apache2/conf.d/10-opcache.ini"

91 regexp: "^opcache.memory_consumption"

92 line: "opcache.memory_consumption = 96"

93 state: present

94 notify: restart apache

Ansible’s lineinfilemodule does a simple task: ensures that a particular line of text
exists (or doesn’t exist) in a file.

Chapter 4 - Ansible Playbooks 71

In this example, we need to adjust PHP’s default opcache.memory_consumption

option so the Drupal codebase can be compiled into PHP’s system memory for much
faster page load times.

First, we tell lineinfile the location of the file, in the dest parameter. Then, we
give a regular expression (Python-style) to define what the line looks like (in this
case, the line starts with the exact phrase “opcache.memory_consumption”). Next,
we tell lineinfile exactly how the resulting line should look. Finally, we explicitly
state that we want this line to be present (with the state parameter).

Ansible will take the regular expression, and see if there’s a matching line. If there is,
Ansible will make sure the line matches the line parameter. If not, Ansible will add
the line as defined in the line parameter. Ansible will only report a change if it had
to add or change the line to match line.

Configure MySQL

The next step is to create a database and user (named for the domain we specified
earlier) for our Drupal installation to use.

96 - name: Create a MySQL database for Drupal.

97 mysql_db: "db={{ domain }} state=present"

98

99 - name: Create a MySQL user for Drupal.

100 mysql_user:

101 name: "{{ domain }}"

102 password: "1234"

103 priv: "{{ domain }}.*:ALL"

104 host: localhost

105 state: present

Chapter 4 - Ansible Playbooks 72

Ansible works with many databases out of the box (MongoDB, MySQL/-
MariaDB, PostgreSQL, Redis, and more). In MySQL’s case, Ansible uses the
MySQLdb Python package (python3-mysqldb) to manage a connection to
the database server, and assumes the default root account credentials (‘root’
as the username with no password). Obviously, leaving this default would
be a bad idea! On a production server, one of the first steps should be to
change the root account password, limit the root account to localhost, and
delete any nonessential database users.

If you use different credentials, you can add a .my.cnf file to your remote
user’s home directory containing the database credentials to allow Ansible
to connect to the MySQL database without leaving passwords in your
Ansible playbooks or variable files. Otherwise, you can prompt the user
running the Ansible playbook for a MySQL username and password. This
option, using prompts, will be discussed later in the book.

Install Composer

If we wanted, we could manually download Drupal from Drupal.org, then run the
install wizard using our browser, but that’s how you’d do things before you learned
to automate with Ansible!

Instead, we’re going to set up the Drupal codebase and install Drupal all via
automation. Drupal uses Composer to configure its codebase and manage PHP
dependencies, so the first step is installing Composer on the server.

107 - name: Download Composer installer.

108 get_url:

109 url: https://getcomposer.org/installer

110 dest: /tmp/composer-installer.php

111 mode: 0755

112

113 - name: Run Composer installer.

114 command: >

115 php composer-installer.php

116 chdir=/tmp

Chapter 4 - Ansible Playbooks 73

117 creates=/usr/local/bin/composer

118

119 - name: Move Composer into globally-accessible location.

120 command: >

121 mv /tmp/composer.phar /usr/local/bin/composer

122 creates=/usr/local/bin/composer

The first two commands download and run Composer’s php-based installer, which
generates a ‘composer.phar’ PHP application archive in /tmp. This archive is then
copied (using the mv shell command) to the location /usr/local/bin/composer so we
can use the composer command to install all of Drush’s dependencies. The latter two
commands are set to run only if the /usr/local/bin/composer file doesn’t already
exist (using the creates parameter).

Why use shell instead of command? Ansible’s command module is the
preferred option for running commands on a host (when anAnsiblemodule
won’t suffice), and it works in most scenarios. However, command doesn’t
run the command via the remote shell /bin/sh, so options like <, >, |, and &,
and local environment variables like $HOME won’t work. shell allows you
to pipe command output to other commands, access the local environment,
etc.

There are two other modules which assist in executing shell commands
remotely: script executes shell scripts (though it’s almost always a better
idea to convert shell scripts into idempotent Ansible playbooks!), and raw

executes raw commands via SSH (it should only be used in circumstances
where you can’t use one of the other options).

It’s best to use an Ansible module for every task. If you have to resort to
a regular command-line command, try the command module first. If you
require the options mentioned above, use shell. Use of script or raw

should be exceedingly rare, and won’t be covered in this book.

Create a Drupal project with Composer

Now that we have composer available, we can create a Drupal project using
Composer’s create-project command. This command downloads Drupal core and
all of it’s recommended dependencies to a folder on the server:

Chapter 4 - Ansible Playbooks 74

124 - name: Ensure Drupal directory exists.

125 file:

126 path: "{{ drupal_core_path }}"

127 state: directory

128 owner: www-data

129 group: www-data

130

131 - name: Check if Drupal project already exists.

132 stat:

133 path: "{{ drupal_core_path }}/composer.json"

134 register: drupal_composer_json

135

136 - name: Create Drupal project.

137 composer:

138 command: create-project

139 arguments: drupal/recommended-project "{{ drupal_core_path }}"

140 working_dir: "{{ drupal_core_path }}"

141 no_dev: true

142 become_user: www-data

143 when: not drupal_composer_json.stat.exists

First, we have to make sure the directory where Drupal will be stored exists, and is
owned by the Apache user, www-data.

Next, for idempotence, we’ll check if the project already exists, by seeing if a
composer.json file (which Composer creates for any new PHP project) exists in the
directory.

Finally, if that file doesn’t already exist, we use Ansible’s composermodule to create
the Drupal project. The no_dev option tells Composer to not install any Drupal
development dependencies, like testing tools that may not be helpful on a production
server.

The composer taskwould be equivalent to running the followingComposer command
directly:

Chapter 4 - Ansible Playbooks 75

$ composer create-project drupal/recommended-project /var/www/drupal --\

no-dev

We used Ansible’s become_user feature in this task so it runs as the Apache user,
www-data. Drupal will be accessed through Apache, and if we created the project as
the default root user, some files would be inaccessible to the Apache web server,
causing errors.

Install Drupal with Drush

Drupal has a command-line companion in the form of Drush. Drush is developed
independently of Drupal, and provides a full suite of CLI commands to manage
Drupal. Drush, like most modern PHP tools, is able to be installed via Composer,
so we can add Drush to our Drupal project via Ansible’s composer module with the
require command.

And once Drush is installed, we can use it to install Drupal:

145 - name: Add drush to the Drupal site with Composer.

146 composer:

147 command: require

148 arguments: drush/drush:11.*

149 working_dir: "{{ drupal_core_path }}"

150 become_user: www-data

151 when: not drupal_composer_json.stat.exists

152

153 - name: Install Drupal.

154 command: >

155 vendor/bin/drush si -y --site-name="{{ drupal_site_name }}"

156 --account-name=admin

157 --account-pass=admin

158 --db-url=mysql://{{ domain }}:1234@localhost/{{ domain }}

159 --root={{ drupal_core_path }}/web

160 chdir={{ drupal_core_path }}

161 creates={{ drupal_core_path }}/web/sites/default/settings.php

162 notify: restart apache

163 become_user: www-data

Chapter 4 - Ansible Playbooks 76

Adding the when condition to this task also means Drush is only added to the project
when the project is initialized. You could remove the when and run the task every
time, but composer require (unlike composer install) can take a while to complete,
so it’s better to not run it after the project is initialized.

To install Drupal, we use Drush’s si command (short for site-install) to run Dru-
pal’s installation (which configures the database (and creates a sites/default/settings.php
file we can use for idempotence), runs some maintenance, and configures default set-
tings for the site). We passed in the domain variable, and added a drupal_site_name,
so add that variable to your vars.yml file:

10 # Your Drupal site name.

11 drupal_site_name: "Drupal Test"

Once the site is installed, we also restart Apache for good measure (using notify

again, like we did when updating Apache’s configuration). Finally, we ran both tasks
using become_user so all created files work correctly with Apache.

Drupal LAMP server summary

To run the playbook on a server (either via a local VM for testing or on another
server), use the following command:

$ ansible-playbook playbook.yml

After the playbook completes, if you access the server at http://drupal.test/ (assuming
you’ve pointed drupal.test to your server or VM’s IP address), you’ll see Drupal’s
default home page, and you could login with ‘admin’/’admin’. (Obviously, you’d set
a secure password on a production server!).

Chapter 4 - Ansible Playbooks 77

Drupal’s default home page.

A similar server configuration, running Apache, MySQL, and PHP, can be used to
run many popular web frameworks and CMSes besides Drupal, including Symfony,
Wordpress, Joomla, Laravel, etc.

The entire example Drupal LAMP server playbook is in this book’s code
repository at https://github.com/geerlingguy/ansible-for-devops⁵², in the
drupal directory.

Real-world playbook: Ubuntu server with Solr

Apache Solr is a fast and scalable search server optimized for full-text search, word
highlighting, faceted search, fast indexing, andmore. It’s a very popular search server,
and it’s pretty easy to install and configure using Ansible. In the following example,
we’re going to set up Apache Solr using Ubuntu 20.04 and Java, on a server or VM
with at least 512 MB of RAM.

⁵²https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 4 - Ansible Playbooks 78

Apache Solr Server.

Include a variables file, and more pre_tasks

Just like the previous LAMP server example, we’ll begin this playbook (again named
playbook.yml) by telling Ansible our variables will be in a separate vars.yml file:

1 ---

2 - hosts: all

3 become: true

4

5 vars_files:

6 - vars.yml

Let’s quickly create the vars.yml file, while we’re thinking about it. Create the file
in the same folder as your Solr playbook, and add the following contents:

Chapter 4 - Ansible Playbooks 79

1 ---

2 download_dir: /tmp

3 solr_dir: /opt/solr

4 solr_version: 8.6.0

5 solr_checksum: sha512:6b0d618069e37215f305d9a61a3e65be2b9cfc32a3689ea6a\

6 25be2f220b1ecc96a644ecc31c81e335a2dfa0bc8b7d0f2881ca192c36fd435cdd832fd\

7 309a9ddb

These variables define two paths we’ll use while downloading and installing Apache
Solr, and the version and file download checksum for downloading Apache Solr’s
source.

Back in our playbook, after the vars_files, we also need to make sure the apt cache
is up to date, using pre_tasks like the previous example:

8 pre_tasks:

9 - name: Update apt cache if needed.

10 apt: update_cache=true cache_valid_time=3600

Install Java

It’s easy enough to install Java on Ubuntu, as it’s in the default apt repositories. We
just need to make sure the right package is installed:

16 tasks:

17 - name: Install Java.

18 apt: name=openjdk-11-jdk state=present

That was easy enough! We used the apt module to install openjdk-11-jdk.

Install Apache Solr

Ubuntu’s LTS release includes a package for Apache Solr, but it installs an older
version, so we’ll install the latest version of Solr from source. The first step is
downloading the source:

Chapter 4 - Ansible Playbooks 80

20 - name: Download Solr.

21 get_url:

22 url: "https://archive.apache.org/dist/lucene/solr/\

23 {{ solr_version }}/solr-{{ solr_version }}.tgz"

24 dest: "{{ download_dir }}/solr-{{ solr_version }}.tgz"

25 checksum: "{{ solr_checksum }}"

When downloading files from remote servers, the get_url module provides more
flexibility and convenience than raw wget or curl commands.

You have to pass get_url a url (the source of the file to be downloaded), and a dest
(the location where the file will be downloaded). If you pass a directory to the dest
parameter, Ansible will place the file inside, but will always re-download the file
on subsequent runs of the playbook (and overwrite the existing download if it has
changed). To avoid this extra overhead, we give the full path to the downloaded file.

We also use checksum, an optional parameter, for peace of mind; if you are download-
ing a file or archive that’s critical to the functionality and security of your application,
it’s a good idea to check the file to make sure it is exactly what you’re expecting.
checksum compares a hash of the data in the downloaded file to a hash that you
specify (and which is provided alongside the downloads on the Apache Solr website).
If the checksum doesn’t match the supplied hash, Ansible will fail and discard the
freshly-downloaded (and invalid) file.

We need to expand the Solr archive so we can run the installer inside, and we can
use the creates option to make this operation idempotent:

26 - name: Expand Solr.

27 unarchive:

28 src: "{{ download_dir }}/solr-{{ solr_version }}.tgz"

29 dest: "{{ download_dir }}"

30 remote_src: true

31 creates: "{{ download_dir }}/solr-{{ solr_version }}/\

32 README.txt"

Chapter 4 - Ansible Playbooks 81

If you read the unarchive module’s documentation, you might notice you
could consolidate both the get_url and unarchive tasks into one task by
setting src to the file URL. Doing this saves a step in the playbook and
is generally preferred, but in Apache Solr’s case, the original .tgz archive
must be present to complete installation, so we still need both tasks.

Now that the source is present, run the Apache Solr installation script (provided
inside the Solr archive’s bin directory) to complete Solr installation:

33 - name: Run Solr installation script.

34 command: >

35 {{ download_dir }}/solr-{{ solr_version }}/bin/install_solr_ser\

36 vice.sh

37 {{ download_dir }}/solr-{{ solr_version }}.tgz

38 -i /opt

39 -d /var/solr

40 -u solr

41 -s solr

42 -p 8983

43 creates={{ solr_dir }}/bin/solr

In this example, the options passed to the installer are hard-coded (e.g. the -p 8983

tells Apache Solr to run on port 8983), and this works fine, but if you’re going to
reuse this playbook for many different types of Solr servers, you should probably
configure many of these options with variables defined in vars.yml. This exercise is
left to the reader.

Finally, we need a task that runs at the end of the playbook to make sure Apache Solr
is started, and will start at system boot:

44 - name: Ensure solr is started and enabled on boot.

45 service: name=solr state=started enabled=yes

Run the playbook with $ ansible-playbook playbook.yml, and after a few minutes
(depending on your server’s Internet connection speed), you should be able to access

Chapter 4 - Ansible Playbooks 82

the Solr admin interface at http://solr.test:8983/solr (where ‘solr.test’ is your server’s
hostname or IP address):

Solr Admin page.

Apache Solr server summary

The configuration we used when deploying Apache Solr allows for a multi core
setup, so you could add more ‘search cores’ via the admin interface (as long as the
directories and core schema configuration is in place in the filesystem), and have
multiple indexes for multiple websites and applications.

A playbook similar to the one above is used as part of the infrastructure for Hosted
Apache Solr⁵³, a service I run which hosts Apache Solr search cores for Drupal
websites.

The entire example Apache Solr server playbook is in this book’s code
repository at https://github.com/geerlingguy/ansible-for-devops⁵⁴, in the
solr directory.

Summary

At this point, you should be getting comfortable with Ansible’s modus operandi,
the playbook. Playbooks are the heart of Ansible’s configuration management and

⁵³https://hostedapachesolr.com/
⁵⁴https://github.com/geerlingguy/ansible-for-devops

https://hostedapachesolr.com/
https://hostedapachesolr.com/
https://github.com/geerlingguy/ansible-for-devops
https://hostedapachesolr.com/
https://github.com/geerlingguy/ansible-for-devops

Chapter 4 - Ansible Playbooks 83

provisioning functionality, and the same modules and similar syntax can be used
with ad-hoc commands for deployments and general server management.

Now that you’re familiar with playbooks, we’ll explore more advanced concepts
in building playbooks, like organization of tasks, conditionals, variables, and more.
Later, we’ll explore the use of playbooks with roles to make them infinitely more
flexible and to save time setting up and configuring your infrastructure.

/ If everything is under control, you are \

\ going too slow. (Mario Andretti) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 5 - Ansible Playbooks -
Beyond the Basics
The playbooks and simple playbook organization we used in the previous chapter
cover many common use cases. When discussing the breadth of system administra-
tion needs, there are thousands more features of Ansible you need to know.

We’ll cover how to run plays with more granularity, how to organize your tasks and
playbooks for simplicity and usability, and other advanced playbook topics that will
help you manage your infrastructure with even more confidence.

Handlers

In chapter 4, the Ubuntu LAMP server example used a simple handler to restart
Apache, and certain tasks that affected Apache’s configuration notified the handler
with the option notify: restart apache:

handlers:

- name: restart apache

service: name=apache2 state=restarted

tasks:

- name: Enable Apache rewrite module.

apache2_module: name=rewrite state=present

notify: restart apache

In some circumstances you may want to notify multiple handlers, or even have
handlers notify additional handlers. Both are easy to do with Ansible. To notify
multiple handlers from one task, use a list for the notify option:

Chapter 5 - Ansible Playbooks - Beyond the Basics 85

- name: Rebuild application configuration.

command: /opt/app/rebuild.sh

notify:

- restart apache

- restart memcached

To have one handler notify another, add a notify option onto the handler—handlers
are basically glorified tasks that can be called by the notify option, but since they
act as tasks themselves, they can chain themselves to other handlers:

handlers:

- name: restart apache

service: name=apache2 state=restarted

notify: restart memcached

- name: restart memcached

service: name=memcached state=restarted

There are a few other considerations when dealing with handlers:

• Handlers will only be run if a task notifies the handler; if a task that would’ve
notified the handlers is skipped due to a when condition or something of the like,
the handler will not be run.

• Handlers will run once, and only once, at the end of a play. If you absolutely
need to override this behavior and run handlers in the middle of a playbook,
you can use the meta module to do so (e.g. - meta: flush_handlers).

• If the play fails on a particular host (or all hosts) before handlers are notified,
the handlers will never be run. If it’s desirable to always run handlers, even
after the playbook has failed, you can use the meta module as described
above as a separate task in the playbook, or you use the command line flag
--force-handlers when running your playbook. Handlers won’t run on any
hosts that became unreachable during the playbook’s run.

Chapter 5 - Ansible Playbooks - Beyond the Basics 86

Environment variables

Ansible allows you to work with environment variables in a variety of ways. First of
all, if you need to set some environment variables for your remote user account, you
can do that by adding lines to the remote user’s .bash_profile, like so:

- name: Add an environment variable to the remote user's shell.

lineinfile:

dest: ~/.bash_profile

regexp: '^ENV_VAR='

line: "ENV_VAR=value"

All subsequent tasks will then have access to this environment variable (remember, of
course, only the shellmodule will understand shell commands that use environment
variables!). To use an environment variable in further tasks, it’s recommended you
use a task’s register option to store the environment variable in a variable Ansible
can use later, for example:

1 - name: Add an environment variable to the remote user's shell.

2 lineinfile:

3 dest: ~/.bash_profile

4 regexp: '^ENV_VAR='

5 line: "ENV_VAR=value"

6

7 - name: Get the value of the environment variable we just added.

8 shell: 'source ~/.bash_profile && echo $ENV_VAR'

9 register: foo

10

11 - name: Print the value of the environment variable.

12 debug:

13 msg: "The variable is {{ foo.stdout }}"

We use source ∼/.bash_profile in line 8 because Ansible needs to make sure it’s
using the latest environment configuration for the remote user. In some situations,

Chapter 5 - Ansible Playbooks - Beyond the Basics 87

the tasks all run over a persistent or quasi-cached SSH session, over which $ENV_VAR

wouldn’t yet be defined.

(This is also the first time the debug module has made an appearance. It will be
explored more in-depth along with other debugging techniques later.).

Why ∼/.bash_profile? There are many different places you can store
environment variables, including .bashrc, .profile, and .bash_login in a
user’s home folder. In our case, since we want the environment variable to
be available to Ansible, which runs a pseudo-TTY shell session, in which
case .bash_profile is used to configure the environment. You can read
more about shell session configuration and these dotfiles in Configuring
your login sessions with dotfiles⁵⁵.

Linux will also read global environment variables added to /etc/environment, so
you can add your variable there:

- name: Add a global environment variable.

lineinfile:

dest: /etc/environment

regexp: '^ENV_VAR='

line: "ENV_VAR=value"

become: yes

In any case, it’s pretty simple to manage environment variables on the server with
lineinfile. If your application requires many environment variables (as is the case
in many Java applications), you might consider using copy or template with a local
file instead of using lineinfile with a large list of items.

Per-task environment variables

You can also set the environment for just one task, using the environment option for
that task. As an example, let’s say you need to set an http proxy for a certain file
download. This can be done with:

⁵⁵http://mywiki.wooledge.org/DotFiles

http://mywiki.wooledge.org/DotFiles
http://mywiki.wooledge.org/DotFiles
http://mywiki.wooledge.org/DotFiles

Chapter 5 - Ansible Playbooks - Beyond the Basics 88

- name: Download a file, using example-proxy as a proxy.

get_url:

url: http://www.example.com/file.tar.gz

dest: ~/Downloads/

environment:

http_proxy: http://example-proxy:80/

That could be rather cumbersome, though, especially if you have many tasks that
require a proxy or some other environment variable. In this case, you can pass an
environment in via a variable in your playbook’s vars section (or via an included
variables file), like so:

vars:

proxy_vars:

http_proxy: http://example-proxy:80/

https_proxy: https://example-proxy:443/

[etc...]

tasks:

- name: Download a file, using example-proxy as a proxy.

get_url:

url: http://www.example.com/file.tar.gz

dest: ~/Downloads/

environment: proxy_vars

If a proxy needs to be set system-wide (as is the case behind many corporate
firewalls), I like to do so using the global /etc/environment file:

Chapter 5 - Ansible Playbooks - Beyond the Basics 89

1 # In the 'vars' section of the playbook (set to 'absent' to remove):

2 proxy_state: present

3

4 # In the 'tasks' section of the playbook:

5 - name: Configure the proxy.

6 lineinfile:

7 dest: /etc/environment

8 regexp: "{{ item.regexp }}"

9 line: "{{ item.line }}"

10 state: "{{ proxy_state }}"

11 with_items:

12 - regexp: "^http_proxy="

13 line: "http_proxy=http://example-proxy:80/"

14 - regexp: "^https_proxy="

15 line: "https_proxy=https://example-proxy:443/"

16 - regexp: "^ftp_proxy="

17 line: "ftp_proxy=http://example-proxy:80/"

Doing it this way allows me to configure whether the proxy is enabled per-server
(using the proxy_state variable), andwith one task, set the http, https, and ftp proxies.
You can use a similar kind of task for any other types of environment variables you
need to set system-wide.

You can test remote environment variables using the ansible command:
ansible test -m shell -a 'echo $TEST'. When doing so, be careful with
your use of quotes and escaping—you might end up using double quotes
where you meant to use single quotes, or vice-versa, and end up printing a
local environment variable instead of one from the remote server!

Variables

Variables in Ansible work just like variables in most other systems. Variables usually
begin with a letter ([A-Za-z]), but can also start with an underscore (_). Variables
can include any number of letters, underscores, or numbers.

Chapter 5 - Ansible Playbooks - Beyond the Basics 90

Valid variable names include foo, foo_bar, foo_bar_5, _foo, and fooBar, though the
standard is to use all lowercase letters, and typically avoid numbers in variable names
(no camelCase or UpperCamelCase).

Invalid variable names include foo-bar, 12, foo.bar and foo bar.

In an ini-style inventory file, a variable’s value is assigned using an equals sign, like
so:

foo=bar

In a playbook or variables include file, a variable’s value is assigned using a colon,
like so:

foo: bar

While it’s not explicitly stated in Ansible’s documentation, starting a vari-
able with an underscore (e.g. _my_variable) is uncommon, but sometimes
is used as a way of indicating a ‘private’ or ‘internal use only’ variable. For
example, many of the geerlingguyAnsible roles I maintain prefix variables
with an underscore if they’re meant for internal role use only, and should
not be overridden by playbooks using the role.

Playbook Variables

There are many different ways you can define variables to use in tasks.

Variables can be passed in via the command line, when calling ansible-playbook,
with the --extra-vars option:

ansible-playbook example.yml --extra-vars "foo=bar"

You can also pass in extra variables using quoted JSON, YAML, or even by passing
a JSON or YAML file directly, like --extra-vars "@even_more_vars.json" or
--extra-vars "@even_more_vars.yml, but at this point, you might be better off using
one of the other methods below.

Variables may be included inline with the rest of a playbook, in a vars section:

Chapter 5 - Ansible Playbooks - Beyond the Basics 91

1 ---

2 - hosts: example

3

4 vars:

5 foo: bar

6

7 tasks:

8 # Prints "Variable 'foo' is set to bar".

9 - debug:

10 msg: "Variable 'foo' is set to {{ foo }}"

Variables may also be included in a separate file, using the vars_files section:

1 ---

2 # Main playbook file.

3 - hosts: example

4

5 vars_files:

6 - vars.yml

7

8 tasks:

9 - debug:

10 msg: "Variable 'foo' is set to {{ foo }}"

1 ---

2 # Variables file 'vars.yml' in the same folder as the playbook.

3 foo: bar

Notice how the variables are all at the root level of the YAML file. They don’t need
to be under any kind of vars heading when they are included as a standalone file.

Variable files can also be imported conditionally. Say, for instance, you have one set
of variables for your RHEL servers (where the Apache service is named httpd), and
another for your Debian servers (where the Apache service is named apache2). In
this case, you can conditionally include variables files using include_vars:

Chapter 5 - Ansible Playbooks - Beyond the Basics 92

1 ---

2 - hosts: example

3

4 pre_tasks:

5 - include_vars: "{{ item }}"

6 with_first_found:

7 - "apache_{{ ansible_os_family }}.yml"

8 - "apache_default.yml"

9

10 tasks:

11 - name: Ensure Apache is running.

12 service:

13 name: "{{ apache_service_name }}"

14 state: running

Then, add two files in the same folder as your example playbook, apache_RedHat.yml,
and apache_default.yml. Define the variable apache_service_name: httpd in the
CentOS file, and apache_service_name: apache2 in the default file.

As long as you don’t disable gather_facts (or if you run a setup task at some
point to gather facts manually), Ansible stores the OS of the server in the variable
ansible_os_family, and will include the vars file with the resulting name. If
ansible can’t find a file with that name, it will use the variables loaded from
apache_default.yml. So, on a Debian or Ubuntu server, Ansible would correctly
use apache2 as the service name, even though there is no apache_Debian.yml or
apache_Ubuntu.yml file available.

Inventory variables

Variables may also be added via Ansible inventory files, either inline with a host
definition, or after a group:

Chapter 5 - Ansible Playbooks - Beyond the Basics 93

1 # Host-specific variables (defined inline).

2 [washington]

3 app1.example.com proxy_state=present

4 app2.example.com proxy_state=absent

5

6 # Variables defined for the entire group.

7 [washington:vars]

8 cdn_host=washington.static.example.com

9 api_version=3.0.1

If you need to define more than a few variables, especially variables that apply to
more than one or two hosts, inventory files can be cumbersome. In fact, Ansible’s
documentation recommends not storing variables within the inventory. Instead, you
can use group_vars and host_vars YAML variable files within a specific path, and
Ansible will assign them to individual hosts and groups defined in your inventory.

For example, to apply a set of variables to the host app1.example.com, create a blank
file named app1.example.com at the location /etc/ansible/host_vars/app1.example.com,
and add variables as you would in an included vars_files YAML file:

1 ---

2 foo: bar

3 baz: qux

To apply a set of variables to the entire washington group, create a similar file in the
location /etc/ansible/group_vars/washington (substitute washington for whatever
group name’s variables you’re defining).

You can also put these files (named the same way) in host_vars or group_vars

directories in your playbook’s directory. Ansible will use the variables defined in
the inventory /etc/ansible/[host|group]_vars directory first (if the appropriate
files exist), then it will use variables defined in the playbook directories.

Another alternative to using host_vars and group_vars is to use conditional variable
file imports, as was mentioned above.

Chapter 5 - Ansible Playbooks - Beyond the Basics 94

Registered Variables

There are many times that you will want to run a command, then use its return code,
stderr, or stdout to determine whether to run a later task. For these situations, Ansible
allows you to use register to store the output of a particular command in a variable
at runtime.

In the previous chapter, we used register to get the output of the forever list

command, then used the output to determine whether we needed to start our Node.js
app:

39 - name: "Node: Check list of Node.js apps running."

40 command: forever list

41 register: forever_list

42 changed_when: false

43

44 - name: "Node: Start example Node.js app."

45 command: forever start {{ node_apps_location }}/app/app.js

46 when: "forever_list.stdout.find(node_apps_location + \

47 '/app/app.js') == -1"

In that example, we used a string function built into Python (find) to search for the
path to our app, and if it was not present, the Node.js app was started.

We will explore the use of register further later in this chapter.

Accessing Variables

Simple variables (gathered by Ansible, defined in inventory files, or defined in
playbook or variable files) can be used as part of a task using syntax like {{ variable

}}. For example:

- command: "/opt/my-app/rebuild {{ my_environment }}"

When the command is run, Ansible will substitute the contents of my_environment
for {{ my_environment }}. So the resulting command would be something like
/opt/my-app/rebuild dev.

Chapter 5 - Ansible Playbooks - Beyond the Basics 95

Many variables you will use are structured as arrays (or ‘lists’), and accessing the
array foo would not give you enough information to be useful (except when passing
in the array in a context where Ansible will use the entire array, like when using
with_items).

If you define a list variable like so:

foo_list:

- one

- two

- three

You could access the first item in that array with either of the following syntax:

foo[0]

foo|first

Note that the first line uses standard Python array access syntax (‘retrieve the first
(0-indexed) element of the array’), whereas the second line uses a convenient filter
provided by Jinja. Either way is equally valid and useful, and it’s really up to you
whether you like the first or second technique.

For larger and more structured arrays (for example, when retrieving the IP address
of the server using the facts Ansible gathers from your server), you can access any
part of the array by drilling through the array keys, either using bracket ([]) or dot
(.) syntax. For example, if you would like to retrieve the information about the eth0
network interface, you could first take a look at the entire array using debug in your
playbook:

In your playbook.

tasks:

- debug:

var: ansible_eth0

Chapter 5 - Ansible Playbooks - Beyond the Basics 96

TASK: [debug var=ansible_eth0] **************************************

ok: [webserver] => {

"ansible_eth0": {

"active": true,

"device": "eth0",

"ipv4": {

"address": "10.0.2.15",

"netmask": "255.255.255.0",

"network": "10.0.2.0"

},

"ipv6": [

{

"address": "fe80::a00:27ff:feb1:589a",

"prefix": "64",

"scope": "link"

}

],

"macaddress": "08:00:27:b1:58:9a",

"module": "e1000",

"mtu": 1500,

"promisc": false,

"type": "ether"

}

}

Now that you know the overall structure of the variable, you can use either of the
following techniques to retrieve only the IPv4 address of the server:

{{ ansible_eth0.ipv4.address }}

{{ ansible_eth0['ipv4']['address'] }}

Be careful when using dot (.) syntax: if a key you access has certain
characters or whitespace (e.g. if a key is some-string, the dot syntax
(dict.some-string) will result in an error. If in doubt, use the bracket
syntax (dict['some-string']).

Chapter 5 - Ansible Playbooks - Beyond the Basics 97

Host and Group variables

Ansible conveniently lets you define or override variables on a per-host or per-group
basis. As we learned earlier, your inventory file can define groups and hosts like so:

1 [group]

2 host1

3 host2

The simplest way to define variables on a per-host or per-group basis is to do so
directly within the inventory file:

1 [group]

2 host1 admin_user=jane

3 host2 admin_user=jack

4 host3

5

6 [group:vars]

7 admin_user=john

In this case, Ansible will use the group default variable ‘john’ for {{ admin_user }},
but for host1 and host2, the admin users defined alongside the hostname will be
used.

This is convenient andworks well when you need to define a variable or two per-host
or per-group, but once you start getting into more involved playbooks, you might
need to add a few (3+) host-specific variables. In these situations, you can define the
variables in a different place to make maintenance and readability much easier.

Automatically-loaded group_vars and host_vars

Ansible will search within the same directory as your inventory file (or inside
/etc/ansible if you’re using the default inventory file at /etc/ansible/hosts) for
two specific directories: group_vars and host_vars.

You can place YAML files inside these directories named after the group name or
hostname defined in your inventory file. Continuing our example above, let’s move
the specific variables into place:

Chapter 5 - Ansible Playbooks - Beyond the Basics 98

1 ---

2 # File: /etc/ansible/group_vars/group

3 admin_user: john

1 ---

2 # File: /etc/ansible/host_vars/host1

3 admin_user: jane

Even if you’re using the default inventory file (or an inventory file outside of
your playbook’s root directory), Ansible will also use host and group variables
files located within your playbook’s own group_vars and host_vars directories.
This is convenient when you want to package together your entire playbook and
infrastructure configuration (including all host/group-specific configuration) into a
source-control repository.

You can also define a group_vars/all file that would apply to all groups. Usually,
though, it’s best to provide defaults in your playbooks and roles (which will be
discussed later).

Magic variables with host and group variables and information

If you ever need to retrieve a specific host’s variables from another host, Ansible
provides a magic hostvars variable containing all the defined host variables (from
inventory files and any discovered YAML files inside host_vars directories).

From any host, returns "jane".

{{ hostvars['host1']['admin_user'] }}

There are a variety of other variables Ansible provides that youmay need to use from
time to time:

• groups: A list of all group names in the inventory.
• group_names: A list of all the groups of which the current host is a part.
• inventory_hostname: The hostname of the current host, according to the inven-
tory (this can differ from ansible_hostname, which is the hostname reported
by the system).

Chapter 5 - Ansible Playbooks - Beyond the Basics 99

• inventory_hostname_short: The first part of inventory_hostname, up to the
first period.

• play_hosts: All hosts on which the current play will be run.

Please see Information about Ansible: magic variables⁵⁶ in Ansible’s official docu-
mentation for the latest information and further usage examples.

Facts (Variables derived from system information)

By default, whenever you run an Ansible playbook, Ansible first gathers information
(“facts”) about each host in the play. You may have noticed this whenever we ran
playbooks in earlier chapters:

$ ansible-playbook playbook.yml

PLAY [group] **

GATHERING FACTS ***

ok: [host1]

ok: [host2]

ok: [host3]

Facts can be extremely helpful when you’re running playbooks; you can use
gathered information like host IP addresses, CPU type, disk space, operating system
information, and network interface information to change when certain tasks are
run, or to change certain information used in configuration files.

To get a list of every gathered fact available, you can use the ansible command with
the setup module:

⁵⁶https://docs.ansible.com/ansible/latest/user_guide/playbooks_vars_facts.html#information-about-ansible-magic-
variables

https://docs.ansible.com/ansible/latest/user_guide/playbooks_vars_facts.html#information-about-ansible-magic-variables
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vars_facts.html#information-about-ansible-magic-variables
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vars_facts.html#information-about-ansible-magic-variables

Chapter 5 - Ansible Playbooks - Beyond the Basics 100

$ ansible munin -m setup

munin.midwesternmac.com | success >> {

"ansible_facts": {

"ansible_all_ipv4_addresses": [

"167.88.120.81"

],

"ansible_all_ipv6_addresses": [

"2604:180::a302:9076",

[...]

If you don’t need to use facts, and would like to save a few seconds per-host when
running playbooks (this can be especially helpful when running an Ansible playbook
against dozens or hundreds of servers), you can set gather_facts: no in your
playbook:

- hosts: db

gather_facts: no

Many of my own playbooks and roles use facts like ansible_os_family, ansible_-
hostname, and ansible_memtotal_mb to register new variables or in tandem with
when, to determine whether to run certain tasks.

If you have Facter⁵⁷ or Ohai⁵⁸ installed on a remote host, Ansible will
also include their gathered facts as well, prefixed by facter_ and ohai_ ,
respectively. If you’re using Ansible in tandem with Puppet or Chef, and
are already familiar with those system-information-gathering tools, you
can conveniently use them within Ansible as well. If not, Ansible’s Facts
are usually sufficient for whatever you need to do, and can be made even
more flexible through the use of Local Facts.

⁵⁷https://puppet.com/docs/puppet/latest/facter.html
⁵⁸https://docs.chef.io/ohai/

https://puppet.com/docs/puppet/latest/facter.html
https://docs.chef.io/ohai/
https://puppet.com/docs/puppet/latest/facter.html
https://docs.chef.io/ohai/

Chapter 5 - Ansible Playbooks - Beyond the Basics 101

If you run a playbook against similar servers or virtual machines (e.g. all
your servers are running the same OS, same hosting provider, etc.), facts
are almost always consistent in their behavior. When running playbooks
against a diverse set of hosts (for example, hosts with different OSes, virtu-
alization stacks, or hosting providers), know that some facts may contain
different information than you were expecting. For Server Check.in⁵⁹, I had
servers from five different hosting providers, running on vastly different
hardware, so I always monitored the output of ansible-playbook runs for
abnormalities, especially when adding new servers.

Local Facts (Facts.d)

Another way of defining host-specific facts is to place a .fact file in a special
directory on remote hosts, /etc/ansible/facts.d/. These files can be either JSON
or INI files, or you could use executables that return JSON. As an example, create
the file /etc/ansible/facts.d/settings.fact on a remote host, with the following
contents:

1 [users]

2 admin=jane,john

3 normal=jim

Next, use Ansible’s setup module to display the new facts on the remote host:

$ ansible hostname -m setup -a "filter=ansible_local"

munin.midwesternmac.com | success >> {

"ansible_facts": {

"ansible_local": {

"settings": {

"users": {

"admin": "jane,john",

"normal": "jim"

}

}

⁵⁹https://servercheck.in/

https://servercheck.in/
https://servercheck.in/

Chapter 5 - Ansible Playbooks - Beyond the Basics 102

}

},

"changed": false

}

If you are using a playbook to provision a new server, and part of that playbook adds
a local .fact file which generates local facts that are used later, you can explicitly
tell Ansible to reload the local facts using a task like the following:

- name: Reload local facts.

setup: filter=ansible_local

While it may be tempting to use local facts rather than host_vars or other
variable definition methods, remember that it’s often better to build your
playbooks in a way that doesn’t rely (or care about) specific details of
individual hosts. Sometimes it is necessary to use local facts (especially
if you are using executables in facts.d to define the facts based on changing
local environments), but it’s almost always better to keep configuration in
a central repository, and move away from host-specific facts.

Note that setup module options (like filter) won’t work on remote
Windows hosts, as of this writing.

Ansible Vault - Keeping secrets secret

If you use Ansible to fully automate the provisioning and configuration of your
servers, chances are you will need to use passwords or other sensitive data for some
tasks, whether it’s setting a default admin password, synchronizing a private key, or
authenticating to a remote service.

Some projects store such data in a normal variables file, in version control with the
rest of the playbook, but in this case, the data is easily accessed by anyone with a
copy of the project. It’s better to treat passwords and sensitive data specially, and
there are two primary ways to do this:

Chapter 5 - Ansible Playbooks - Beyond the Basics 103

1. Use a separate secret management service, such as Vault⁶⁰ by HashiCorp,
Keywhiz⁶¹ by Square, or a hosted service like AWS’s KeyManagement Service⁶²
or Microsoft Azure’s Key Vault⁶³.

2. Use Ansible Vault, which is built into Ansible and stores encrypted passwords
and other sensitive data alongside the rest of your playbook.

For most projects, Ansible’s built-in Vault is adequate, but if you need some of the
more advanced features found in the other projects listed in option #1 above, Ansible
Vault might be too limiting.

Ansible Vault works much like a real-world vault:

1. You take any YAML file you would normally have in your playbook (e.g. a
variables file, host vars, group vars, role default vars, or even task includes!),
and store it in the vault.

2. Ansible encrypts the vault (‘closes the door’), using a key (a password you set).
3. You store the key (your vault’s password) separately from the playbook in a

location only you control or can access.
4. You use the key to let Ansible decrypt the encrypted vault whenever you run

your playbook.

Let’s see how it works in practice. Here’s a playbook in a file named main.yml that
demonstrates the use of an API key:

⁶⁰https://vaultproject.io/
⁶¹http://square.github.io/keywhiz/
⁶²https://aws.amazon.com/kms/
⁶³http://azure.microsoft.com/en-us/services/key-vault/

https://vaultproject.io/
http://square.github.io/keywhiz/
https://aws.amazon.com/kms/
http://azure.microsoft.com/en-us/services/key-vault/
https://vaultproject.io/
http://square.github.io/keywhiz/
https://aws.amazon.com/kms/
http://azure.microsoft.com/en-us/services/key-vault/

Chapter 5 - Ansible Playbooks - Beyond the Basics 104

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5

6 vars_files:

7 - vars/api_key.yml

8

9 tasks:

10 - name: Echo the API key which was injected into the env.

11 shell: echo $API_KEY

12 environment:

13 API_KEY: "{{ myapp_api_key }}"

14 register: echo_result

15

16 - name: Show the result.

17 debug: var=echo_result.stdout

The api_key.yml vars file, which is stored alongside the playbook in a vars folder,
looks like:

1 ---

2 myapp_api_key: "l9bTqfBlbXTQiDaJMqgPJ1VdeFLfId98"

This is convenient, but it’s not safe to store the API key in plain text. Even when
running the playbook locally on an access-restricted computer, secrets should be
encrypted. If you’re running the playbook via a central server (e.g. using Ansible
Tower or Jenkins), or if you have this playbook in a shared repository, it’s even more
important. You may follow best practices for physical and OS security, but can you
guarantee every developer and sysadmin who has access to this file does the same?

For the best security, use Ansible Vault to encrypt the file. If you ever checked the
original file into version control, it’s also a good time to expire the old key and
generate a new one, since the old key is part of the plaintext history of your project!

To encrypt the file with Vault, run:

Chapter 5 - Ansible Playbooks - Beyond the Basics 105

$ ansible-vault encrypt vars/api_key.yml

Enter a secure password for the file, and Ansible will encrypt it. If you open the file
now, you should see something like:

1 $ANSIBLE_VAULT;1.1;AES256

2 653635363963663439383865313262396665353063663839616266613737616539303

3 530313663316264336133626266336537616463366465653862366231310a30633064

4 633234306335333739623661633132376235666563653161353239383664613433663

5 1303132303566316232373865356237383539613437653563300a3263386336393866

6 376535646562336664303137346432313563373534373264363835303739366362393

7 639646137656633656630313933323464333563376662643336616534353234663332

8 656138326530366434313161363562333639383864333635333766316161383832383

9 831626166623762643230313436386339373437333830306438653833666364653164

10 6633613132323738633266363437

Next time you run the playbook, you will need to provide the password you used
for the vault so Ansible can decrypt the playbook in memory for the brief period in
which it will be used. If you don’t specify the password, you’ll receive an error:

$ ansible-playbook main.yml

ERROR: A vault password must be specified to decrypt vars/api_key.yml

There are a number of ways you can provide the password, depending on how
you run playbooks. Providing the password at playbook runtime works well when
running a playbook interactively:

Use --ask-vault-pass to supply the vault password at runtime.

$ ansible-playbook main.yml --ask-vault-pass

Vault password:

After supplying the password, Ansible decrypts the vault (in memory) and runs the
playbook with the decrypted data.

You can edit the encrypted file with ansible-vault edit. You can also rekey a file
(change its password), create a new file, view an existing file, or decrypt a file. All

Chapter 5 - Ansible Playbooks - Beyond the Basics 106

these commands work with one or multiple files (e.g. ansible-vault create x.yml

y.yml z.yml).

For convenience, or for automated playbook runs (e.g. on a continuous integration
server), you can supply vault passwords via a password file. Just like secure keys
in your ∼/.ssh folder, you should treat these files carefully: never check them
into source control, and set strict permissions (e.g. 600) so only you can read or
write this file. Create the file ∼/.ansible/vault_pass.txt with your password in
it, set permissions to 600, and tell Ansible the location of the file when you run the
playbook:

Use --vault-password-file to supply the password via file/script.

$ ansible-playbook main.yml --vault-password-file ~/.ansible/\

vault_pass.txt

You could also use an executable script (e.g.∼/.ansible/vault_pass.pywith execute
permissions, 700), as long as the script outputs a single line of text, the vault password.

Are you worried about the security of Vault-encrypted files? AES-256
encryption is extremely secure; it would take billions of billions of years to
decrypt this single file, even if all of today’s fastest supercomputer clusters
were all put to the task 24x7. Of course, every vault is only as secure as its
password, so make sure you use a secure password and store it securely!

More options and examples are available in the official documentation for Ansible
Vault⁶⁴.

Variable Precedence

It should be rare that you would need to dig into the details of which variable is
used when you define the same variable in five different places, but since there are
odd occasions where this is the case, Ansible’s documentation provides the following
ranking:

⁶⁴http://docs.ansible.com/ansible/playbooks_vault.html

http://docs.ansible.com/ansible/playbooks_vault.html
http://docs.ansible.com/ansible/playbooks_vault.html
http://docs.ansible.com/ansible/playbooks_vault.html

Chapter 5 - Ansible Playbooks - Beyond the Basics 107

1. --extra-vars passed in via the command line (these always win, no matter
what).

2. Task-level vars (in a task block).
3. Block-level vars (for all tasks in a block).
4. Role vars (e.g. [role]/vars/main.yml) and vars from include_vars module.
5. Vars set via set_facts modules.
6. Vars set via register in a task.
7. Individual play-level vars: 1. vars_files 2. vars_prompt 3. vars
8. Host facts.
9. Playbook host_vars.
10. Playbook group_vars.
11. Inventory: 1. host_vars 2. group_vars 3. vars
12. Role default vars (e.g. [role]/defaults/main.yml).

After lots of experience building playbooks, roles, and managing inventories, you’ll
likely find the right mix of variable definition for your needs, but there are a few
general things that will mitigate any pain in setting and overriding variables on a
per-play, per-host, or per-run basis:

• Roles (to be discussed in the next chapter) should provide sane default values
via the role’s ‘defaults’ variables. These variables will be the fallback in case the
variable is not defined anywhere else in the chain.

• Playbooks should rarely define variables (e.g. via set_fact), but rather, vari-
ables should be defined either in included vars_files or, less often, via
inventory.

• Only truly host- or group-specific variables should be defined in host or group
inventories.

• Dynamic and static inventory sources should contain a minimum of variables,
especially as these variables are often less visible to those maintaining a
particular playbook.

• Command line variables (-e) should be avoided when possible. One of the main
use cases is when doing local testing or running one-off playbooks where you
aren’t worried about the maintainability or idempotence of the tasks you’re
running.

Chapter 5 - Ansible Playbooks - Beyond the Basics 108

See Ansible’s Variable Precedence⁶⁵ documentation for more detail and examples,
especially if you use older versions of Ansible (since older versions were not as strict
about the precedence).

If/then/when - Conditionals

Many tasks need only be run in certain circumstances. Some tasks use modules with
built-in idempotence (as is the case when ensuring a dnf or apt package is installed),
and you usually don’t need to define further conditional behaviors for these tasks.

However, there are many tasks—especially those using Ansible’s command or shell
modules—which require further input as to when they’re supposed to run, whether
they’ve changed anything after they’ve been run, or when they’ve failed to run.

We’ll cover all the main conditionals behaviors you can apply to Ansible tasks, as
well as how you can tell Ansible when a play has done something to a server or
failed.

Jinja Expressions, Python built-ins, and Logic

Before discussing all the different uses of conditionals in Ansible, it’s worthwhile
to cover a small part of Jinja (the syntax Ansible uses both for templates and for
conditionals), and available Python functions (often referred to as ‘built-ins’). Ansible
uses expressions and built-ins with when, changed_when, and failed_when so you can
describe these things to Ansible with as much precision as possible.

Jinja allows the definition of literals like strings ("string"), integers (42), floats
(42.33), lists ([1, 2, 3]), tuples (like lists, but can’t be modified) dictionaries ({key:
value, key2: value2}), and booleans (true or false).

Jinja also allows basic math operations, like addition, subtraction, multiplication and
division, and comparisons (== for equality, != for inequality, >= for greater than or
equal to, etc.). Logical operators are and, or, and not, and you can group expressions
by placing them within parenthesis.

If you’re familiar with almost any programming language, you will probably pick up
basic usage of Jinja expressions in Ansible very quickly.

⁶⁵http://docs.ansible.com/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

http://docs.ansible.com/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Chapter 5 - Ansible Playbooks - Beyond the Basics 109

For example:

The following expressions evaluate to 'true':

1 in [1, 2, 3]

'see' in 'Can you see me?'

foo != bar

(1 < 2) and ('a' not in 'best')

The following expressions evaluate to 'false':

4 in [1, 2, 3]

foo == bar

(foo != foo) or (a in [1, 2, 3])

Jinja also offers a helpful set of ‘tests’ you can use to test a given object. For example,
if you define the variable foo for only a certain group of servers, but not others, you
can use the expression foo is defined with a conditional to evaluate to ‘true’ if the
variable is defined, or false if not.

There are many other checks you can perform as well, like undefined (the opposite
of defined), equalto (works like ==), even (returns true if the variable is an even
number), and iterable (if you can iterate over the object). We’ll cover the full gamut
later in the book, but for now, know that you can use Ansible conditionals with Jinja
expressions to do some powerful things!

For the few cases where Jinja doesn’t provide enough power and flexibility, you
can invoke Python’s built-in library functions (like string.split, [number].is_-
signed()) to manipulate variables and determine whether a given task should be
run, resulted in a change, failed, etc.

As an example, I need to parse version strings from time to time, to find the major
version of a particular project. Assuming the variable software_version is set to
4.6.1, I can get the major version by splitting the string on the . character, then
using the first element of the array. I can check if the major version is 4 using when,
and choose to run (or not run) a certain task:

Chapter 5 - Ansible Playbooks - Beyond the Basics 110

1 - name: Do something only for version 4 of the software.

2 [task here]

3 when: software_version.split('.')[0] == '4'

It’s generally best to stick with simpler Jinja filters and variables, but it’s nice to be
able to use Python when you’re doing more advanced variable manipulation.

register

In Ansible, any play can ‘register’ a variable, and once registered, that variable will be
available to all subsequent tasks. Registered variables work just like normal variables
or host facts.

Many times, you may need the output (stdout or stderr) of a shell command, and you
can get that in a variable using the following syntax:

- shell: my_command_here

register: my_command_result

Later, you can access stdout (as a string) with my_command_result.stdout, and stderr
with my_command_result.stderr.

Registered facts are very helpful for many types of tasks, and can be used both with
conditionals (defining when and how a play runs), and in any part of the play. As an
example, if you have a command that outputs a version number string like “10.0.4”,
and you register the output as version, you can use the string later when doing a
code checkout by printing the variable {{ version.stdout }}.

If you want to see the different properties of a particular registered variable,
you can run a playbook with -v to inspect play output. Usually, you’ll get
access to values like changed (whether the play resulted in a change), delta
(the time it took to run the play), stderr and stdout, etc. Some Ansible
modules (like stat) add much more data to the registered variable, so
always inspect the output with -v if you need to see what’s inside.

Chapter 5 - Ansible Playbooks - Beyond the Basics 111

when

One of the most helpful extra keys you can add to a play is a when statement. Let’s
take a look at a simple use of when:

- dnf: name=mysql-server state=present

when: is_db_server

The above statement assumes you’ve defined the is_db_server variable as a boolean
(true or false) earlier, and will run the play if the value is true, or skip the play when
the value is false.

If you only define the is_db_server variable on database servers (meaning there are
times when the variable may not be defined at all), you could run tasks conditionally
like so:

- dnf: name=mysql-server state=present

when: (is_db_server is defined) and is_db_server

when is even more powerful if used in conjunction with variables registered by
previous tasks. As an example, we want to check the status of a running application,
and run a play only when that application reports it is ‘ready’ in its output:

- command: my-app --status

register: myapp_result

- command: do-something-to-my-app

when: "'ready' in myapp_result.stdout"

These examples are a little contrived, but they illustrate basic uses of when in your
tasks. Here are some examples of uses of when in real-world playbooks:

Chapter 5 - Ansible Playbooks - Beyond the Basics 112

From our Node.js playbook - register a command's output, then see

if the path to our app is in the output. Start the app if it's

not present.

- command: forever list

register: forever_list

- command: forever start /path/to/app/app.js

when: "forever_list.stdout.find('/path/to/app/app.js') == -1"

Run 'ping-hosts.sh' script if 'ping_hosts' variable is true.

- command: /usr/local/bin/ping-hosts.sh

when: ping_hosts

Run 'git-cleanup.sh' script if a branch we're interested in is

missing from git's list of branches in our project.

- command: chdir=/path/to/project git branch

register: git_branches

- command: /path/to/project/scripts/git-cleanup.sh

when: "(is_app_server == true) and ('interesting-branch' not in \

git_branches.stdout)"

Downgrade PHP version if the current version contains '7.0'.

- shell: php --version

register: php_version

- shell: dnf -y downgrade php*

when: "'7.0' in php_version.stdout"

Copy a file to the remote server if the hosts file doesn't exist.

- stat: path=/etc/hosts

register: hosts_file

- copy: src=path/to/local/file dest=/path/to/remote/file

when: hosts_file.stat.exists == false

changed_when and failed_when

Just like when, you can use changed_when and failed_when to influence Ansible’s
reporting of when a certain task results in changes or failures.

Chapter 5 - Ansible Playbooks - Beyond the Basics 113

It is difficult for Ansible to determine if a given command results in changes, so
if you use the command or shell module without also using changed_when, Ansible
will always report a change. Most Ansible modules report whether they resulted in
changes correctly, but you can also override this behavior by invoking changed_when
yourself.

When using PHP Composer as a command to install project dependencies, it’s useful
to know when Composer installed something, or when nothing changed. Here’s an
example:

1 - name: Install dependencies via Composer.

2 command: "/usr/local/bin/composer global require phpunit/phpunit \

3 --prefer-dist"

4 register: composer

5 changed_when: "'Nothing to install' not in composer.stdout"

You can see we used register to store the results of the command, then we checked
whether a certain string was in the registered variable’s stdout. Only when Composer
doesn’t do anything will it print “Nothing to install or update”, so we use that string
to tell Ansible if the task resulted in a change.

Many command-line utilities print results to stderr instead of stdout, so failed_when
can be used to tell Ansible when a task has actually failed and is not just reporting
its results in the wrong way. Here’s an example where we need to parse the stderr
of a Jenkins CLI command to see if Jenkins did, in fact, fail to perform the command
we requested:

1 - name: Import a Jenkins job via CLI.

2 shell: >

3 java -jar /opt/jenkins-cli.jar -s http://localhost:8080/

4 create-job "My Job" < /usr/local/my-job.xml

5 register: import

6 failed_when: "import.stderr and 'exists' not in import.stderr"

In this case, we only want Ansible to report a failure when the command returns
an error, and that error doesn’t contain ‘exists’. It’s debatable whether the command
should report a job already exists via stderr, or just print the result to stdout… but
it’s easy to account for whatever the command does with Ansible!

Chapter 5 - Ansible Playbooks - Beyond the Basics 114

ignore_errors

Sometimes there are commands that should be run always, and they often report
errors. Or there are scripts you might run that output errors left and right, and the
errors don’t actually indicate a problem, but they’re just annoying (and they cause
your playbooks to stop executing).

For these situations, you can add ignore_errors: true to the task, and Ansible will
remain blissfully unaware of any problems running a particular task. Be careful using
this, though; it’s usually best if you can find away toworkwith and around the errors
generated by tasks so playbooks do fail if there are actual problems.

Delegation, Local Actions, and Pauses

Some tasks, like sending a notification, communicating with load balancers, or
making changes to DNS, networking, or monitoring servers, require Ansible to run
the task on the host machine (running the playbook) or another host besides the
one(s) being managed by the playbook. Ansible allows any task to be delegated to a
particular host using delegate_to:

- name: Add server to Munin monitoring configuration.

command: monitor-server webservers {{ inventory_hostname }}

delegate_to: "{{ monitoring_master }}"

Delegation is often used to manage a server’s participation in a load balancer or
replication pool; you might either run a particular command locally (as in the
example below), or you could use one of Ansible’s built-in load balancer modules
and delegate_to a specific load balancer host directly:

- name: Remove server from load balancer.

command: remove-from-lb {{ inventory_hostname }}

delegate_to: 127.0.0.1

If you’re delegating a task to localhost, Ansible has a convenient shorthand you can
use, local_action, instead of adding the entire delegate_to line:

Chapter 5 - Ansible Playbooks - Beyond the Basics 115

- name: Remove server from load balancer.

local_action: command remove-from-lb {{ inventory_hostname }}

Pausing playbook execution with wait_for

You might also use local_action in the middle of a playbook to wait for a freshly-
booted server or application to start listening on a particular port:

- name: Wait for web server to start.

local_action:

module: wait_for

host: "{{ inventory_hostname }}"

port: "{{ webserver_port }}"

delay: 10

timeout: 300

state: started

The above task waits until webserver_port is open on inventory_hostname, as
checked from the host running the Ansible playbook, with a 5-minute timeout (and
10 seconds before the first check, and between checks).

wait_for can be used to pause your playbook execution to wait for many different
things:

• Using host and port, wait a maximum of timeout seconds for the port to be
available (or not).

• Using path (and search_regex if desired), wait a maximum of timeout seconds
for the file to be present (or absent).

• Using host and port and drained for the state parameter, check if a given port
has drained all its active connections.

• Using delay, you can simply pause playbook execution for a given amount of
time (in seconds).

Chapter 5 - Ansible Playbooks - Beyond the Basics 116

Running an entire playbook locally

When running playbooks on the server or workstation where the tasks need to be
run (e.g. self-provisioning), or when a playbook should be otherwise run on the same
host as the ansible-playbook command is run, you can use --connection=local to
speed up playbook execution by avoiding the SSH connection overhead.

As a quick example, here’s a short playbook that you can run with the command
ansible-playbook test.yml --connection=local:

1 ---

2 - hosts: 127.0.0.1

3 gather_facts: no

4

5 tasks:

6 - name: Check the current system date.

7 command: date

8 register: date

9

10 - name: Print the current system date.

11 debug:

12 var: date.stdout

This playbookwill run on localhost and output the current date in a debugmessage. It
should run very fast (it took about .2 seconds on my Mac!) since it’s running entirely
over a local connection.

Running a playbook with --connection=local is also useful when you’re either
running a playbook with --check mode to verify configuration (e.g. on a cron job
that emails you when changes are reported), or when testing playbooks on testing
infrastructure (e.g. via Travis, Jenkins, or some other CI tool).

Prompts

Under rare circumstances, you may require the user to enter the value of a variable
that will be used in the playbook. If the playbook requires a user’s personal login

Chapter 5 - Ansible Playbooks - Beyond the Basics 117

information, or if you prompt for a version or other values that may change
depending on who is running the playbook, or where it’s being run, and if there’s
no other way this information can be configured (e.g. using environment variables,
inventory variables, etc.), use vars_prompt.

As a simple example, you can request a user to enter a username and password that
could be used to login to a network share:

1 ---

2 - hosts: all

3

4 vars_prompt:

5 - name: share_user

6 prompt: "What is your network username?"

7

8 - name: share_pass

9 prompt: "What is your network password?"

10 private: yes

Before Ansible runs the play, Ansible prompts the user for a username and password,
the latter’s input being hidden on the command line for security purposes.

There are a few special options you can add to prompts:

• private: If set to yes, the user’s input will be hidden on the command line.
• default: You can set a default value for the prompt, to save time for the end
user.

• encrypt / confirm / salt_size: These values can be set for passwords so you
can verify the entry (the user will have to enter the password twice if confirm is
set to yes), and encrypt it using a salt (with the specified size and crypt scheme).
See Ansible’s Prompts⁶⁶ documentation for detailed information on prompted
variable encryption.

Prompts are a simple way to gather user-specific information, but in most cases,
you should avoid them unless absolutely necessary. It’s preferable to use role or
playbook variables, inventory variables, or even local environment variables, to
maintain complete automation of the playbook run.

⁶⁶http://docs.ansible.com/playbooks_prompts.html#prompts

http://docs.ansible.com/playbooks_prompts.html#prompts
http://docs.ansible.com/playbooks_prompts.html#prompts

Chapter 5 - Ansible Playbooks - Beyond the Basics 118

Tags

Tags allow you to run (or exclude) subsets of a playbook’s tasks.

You can tag roles, included files, individual tasks, and even entire plays. The syntax
is simple, and below are examples of the different ways you can add tags:

1 ---

2 # You can apply tags to an entire play.

3 - hosts: webservers

4 tags: deploy

5

6 roles:

7 # Tags applied to a role will be applied to tasks in the role.

8 - role: tomcat

9 tags: ['tomcat', 'app']

10

11 tasks:

12 - name: Notify on completion.

13 local_action:

14 module: osx_say

15 msg: "{{inventory_hostname}} is finished!"

16 voice: Zarvox

17 tags:

18 - notifications

19 - say

20

21 - import_tasks: foo.yml

22 tags: foo

Assuming we save the above playbook as tags.yml, you could run the command
below to only run the tomcat role and the Notify on completion task:

1 $ ansible-playbook tags.yml --tags "tomcat,say"

If youwant to exclude anything taggedwith notifications, you can use --skip-tags.

Chapter 5 - Ansible Playbooks - Beyond the Basics 119

1 $ ansible-playbook tags.yml --skip-tags "notifications"

This is incredibly handy if you have a decent tagging structure; when you want to
only run a particular portion of a playbook, or one play in a series (or, alternatively,
if you want to exclude a play or included tasks), then it’s easy to do using --tags or
--skip-tags.

There is one caveat when adding one or multiple tags using the tags option in a
playbook: you can use the shorthand tags: tagname when adding just one tag, but
if adding more than one tag, you have to use YAML’s list syntax, for example:

Shorthand list syntax.

tags: ['one', 'two', 'three']

Explicit list syntax.

tags:

- one

- two

- three

Non-working example.

tags: one, two, three

In general, I tend to use tags for larger playbooks, especially with individual roles
and plays, but unless I’m debugging a set of tasks, I generally avoid adding tags to
individual tasks or includes (not adding tags everywhere reduces visual clutter). You
will need to find a tagging style that suits your needs and lets you run (or not run)
the specific parts of your playbooks you desire.

Blocks

Introduced in Ansible 2.0.0, Blocks allow you to group related tasks together and
apply particular task parameters on the block level. They also allow you to handle
errors inside the blocks in a way similar to most programming languages’ exception
handling.

Chapter 5 - Ansible Playbooks - Beyond the Basics 120

Here’s an example playbook that uses blocks with when to run group of tasks specific
to one platform without when parameters on each task:

1 ---

2 - hosts: web

3 tasks:

4 # Install and configure Apache on RHEL/CentOS hosts.

5 - block:

6 - dnf: name=httpd state=present

7 - template: src=httpd.conf.j2 dest=/etc/httpd/conf/httpd.conf

8 - service: name=httpd state=started enabled=yes

9 when: ansible_os_family == 'RedHat'

10 become: yes

11

12 # Install and configure Apache on Debian/Ubuntu hosts.

13 - block:

14 - apt: name=apache2 state=present

15 - template: src=httpd.conf.j2 dest=/etc/apache2/apache2.conf

16 - service: name=apache2 state=started enabled=yes

17 when: ansible_os_family == 'Debian'

18 become: yes

If you want to perform a series of tasks with one set of task parameters (e.g. with_-
items, when, or become) applied, blocks are quite handy.

Blocks are also useful if you want to be able to gracefully handle failures in certain
tasks. There might be a task that connects your app to a monitoring service that’s
not essential for a deployment to succeed, so it would be better to gracefully handle
a failure than to bail out of the entire deployment!

Here’s how to use a block to gracefully handle task failures:

Chapter 5 - Ansible Playbooks - Beyond the Basics 121

1 tasks:

2 - block:

3 - name: Script to connect the app to a monitoring service.

4 script: monitoring-connect.sh

5 rescue:

6 - name: This will only run in case of an error in the block.

7 debug: msg="There was an error in the block."

8 always:

9 - name: This will always run, no matter what.

10 debug: msg="This always executes."

Tasks inside the block will be run first. If there is a failure in any task in block, tasks
inside rescuewill be run. The tasks inside alwayswill always be run, whether or not
there were failures in either block or rescue.

Blocks can be very helpful for building reliable playbooks, but just like exceptions in
programming languages, block/rescue/always failure handling can over-complicate
things. If it’s easier to maintain idempotence using failed_when per-task to define
acceptable failure conditions, or to structure your playbook in a different way, it may
not be necessary to use block/rescue/always.

Summary

Playbooks are Ansible’s primary means of automating infrastructure management.
After reading this chapter, you should know how to use (and hopefully not abuse!)
variables, inventories, handlers, conditionals, tags, and more.

The more you understand the fundamental components of a playbook, the more
efficient you will be at building and expanding your infrastructure with Ansible.

Chapter 5 - Ansible Playbooks - Beyond the Basics 122

/ Men have become the tools of their \

\ tools. (Henry David Thoreau) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 6 - Playbook
Organization - Roles, Includes,
and Imports
So far, we’ve used fairly straightforward examples in this book. Most examples are
created for a particular server, and are in one long playbook.

Ansible is flexible when it comes to organizing tasks in more efficient ways so
you can make playbooks more maintainable, reusable, and powerful. We’ll look
at two ways to split up tasks more efficiently using includes and roles, and we’ll
explore Ansible Galaxy, a repository of some community-maintained roles that help
configure common packages and applications.

Imports

We’ve already seen one of the most basic ways of including other files in Chapter 4,
when vars_fileswas used to place variables into a separate vars.yml file instead of
inline with the playbook:

- hosts: all

vars_files:

- vars.yml

Tasks can easily be included in a similar way. In the tasks: section of your playbook,
you can add import_tasks directives like so:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 124

tasks:

- import_tasks: imported-tasks.yml

Just like with variable include files, tasks are formatted in a flat list in the included
file. As an example, the imported-tasks.yml could look like this:

- name: Add profile info for user.

copy:

src: example_profile

dest: "/home/{{ username }}/.profile"

owner: "{{ username }}"

group: "{{ username }}"

mode: 0744

- name: Add private keys for user.

copy:

src: "{{ item.src }}"

dest: "/home/{{ username }}/.ssh/{{ item.dest }}"

owner: "{{ username }}"

group: "{{ username }}"

mode: 0600

with_items: "{{ ssh_private_keys }}"

- name: Restart example service.

service:

name: example

state: restarted

In this case, you’d probably want to name the file user.yml, since it’s used to
configure a user account and restart some service. Now, in this and any other
playbook that provisions or configures a server, if you want to configure a particular
user’s account, add the following in your playbook’s tasks section:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 125

tasks:

- import_tasks: user.yml

We used {{ username }} and {{ ssh_private_keys }} variables in this include file
instead of hard-coded values so we could make this include file reusable. You could
define the variables in your playbook’s inline variables or an included variables file,
but Ansible also lets you pass variables directly into includes using normal YAML
syntax. For example:

tasks:

- import_tasks: user.yml

vars:

username: johndoe

ssh_private_keys:

- { src: /path/to/johndoe/key1, dest: id_rsa }

- { src: /path/to/johndoe/key2, dest: id_rsa_2 }

- import_tasks: user.yml

vars:

username: janedoe

ssh_private_keys:

- { src: /path/to/janedoe/key1, dest: id_rsa }

- { src: /path/to/janedoe/key2, dest: id_rsa_2 }

Imported files can even import other files, so you could have something like the
following:

tasks:

- import_tasks: user-config.yml

inside user-config.yml

- import_tasks: ssh-setup.yml

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 126

Includes

If you use import_tasks, Ansible statically imports the task file as if it were part of
the main playbook, once, before the Ansible play is executed.

If you need to have included tasks that are dynamic—that is, they need to do different
things depending on how the rest of the playbook runs—then you can use include_-
tasks rather than import_tasks.

As an example, in one of my Ansible projects, I have a task file log_paths.yml with
the following:

- name: Check for existing log files in dynamic log_file_paths variable.

find:

paths: "{{ item }}"

patterns: '*.log'

register: found_log_file_paths

with_items: "{{ log_file_paths }}"

In this case, the log_file_paths variable is set by a task earlier in my playbook—so
this include file wouldn’t be able to know the value of that variable until the playbook
has already partly completed.

So when I include this task file, I have to do so dynamically, for example:

- include_tasks: log_paths.yml

Early on, Ansible only had static include available for task inclusion, but
as playbooks became more complex, people need to be able to include
tasks that were processed when run (instead of added to the list of tasks
before the play started running). So Ansible 2.1 introduced the static flag
for include:. This worked, but overloaded the use of one keyword, so
in Ansible 2.4, the use of include: was deprecated and you should use
import_tasks if your tasks can basically be inlined before the playbook
runs, or include_tasks if the tasks might need to be more dynamic (e.g.
registering and reacting to a new registered variable).

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 127

Dynamic includes

Until Ansible 2.0, includes were always processed when your playbook run started
(just like import_tasks behaves now), so you couldn’t do things like load a particular
include when some condition was met. Ansible 2.0 and later evaluates includes
during playbook execution, so you can do something like the following:

Include extra tasks file, only if it's present at runtime.

- name: Check if extra_tasks.yml is present.

stat:

path: tasks/extra-tasks.yml

register: extra_tasks_file

connection: local

- include_tasks: tasks/extra-tasks.yml

when: extra_tasks_file.stat.exists

If the file tasks/extra-tasks.yml is not present, Ansible skips the include_tasks.
You can even use a with_items loop (or any other with_* loop) with includes.
Includes evaluated during playbook execution can make your playbooks much more
flexible!

Handler imports and includes

Handlers can be imported or included just like tasks, within a playbook’s handlers
section. For example:

handlers:

- import_tasks: handlers.yml

This can be helpful in limiting the noise in your main playbook, since handlers are
usually used for things like restarting services or loading a configuration, and can
distract from the playbook’s primary purpose.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 128

Playbook imports

Playbooks can even be included in other playbooks, using the same import syntax in
the top level of your playbook (though for playbooks, you only have import_playbook
available, as they cannot be dynamic like task includes). For example, if you have two
playbooks—one to set up your webservers (web.yml), and one to set up your database
servers (db.yml), you could use the following playbook to run both at the same time:

- hosts: all

remote_user: root

tasks:

[...]

- import_playbook: web.yml

- import_playbook: db.yml

This way, you can create playbooks to configure all the servers in your infrastructure,
then create a master playbook that includes each of the individual playbooks. When
you want to initialize your infrastructure, make changes across your entire fleet of
servers, or check to make sure their configuration matches your playbook definitions,
you can run one ansible-playbook command!

Complete includes example

What if I told you we could remake the 137-line Drupal LAMP server playbook from
Chapter 4 in just 21 lines? With includes, it’s easy; just break out each of the sets of
tasks into their own include files, and you’ll end up with a main playbook like this:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 129

1 ---

2 - hosts: all

3

4 vars_files:

5 - vars.yml

6

7 pre_tasks:

8 - name: Update apt cache if needed.

9 apt: update_cache=yes cache_valid_time=3600

10

11 handlers:

12 - import_tasks: handlers/handlers.yml

13

14 tasks:

15 - import_tasks: tasks/common.yml

16 - import_tasks: tasks/apache.yml

17 - import_tasks: tasks/php.yml

18 - import_tasks: tasks/mysql.yml

19 - import_tasks: tasks/composer.yml

20 - import_tasks: tasks/drush.yml

21 - import_tasks: tasks/drupal.yml

All you need to do is create two new folders in the same folder where you saved
the Drupal playbook.yml file, handlers and tasks, then create files inside for each
section of the playbook.

For example, inside handlers/handlers.yml, you’d have:

1 ---

2 - name: restart apache

3 service: name=apache2 state=restarted

And inside tasks/drush.yml:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 130

1 ---

2 - name: Check out drush 8.x branch.

3 git:

4 repo: https://github.com/drush-ops/drush.git

5 version: 8.x

6 dest: /opt/drush

7

8 - name: Install Drush dependencies with Composer."

9 shell: >

10 /usr/local/bin/composer install

11 chdir=/opt/drush

12 creates=/opt/drush/vendor/autoload.php

13

14 - name: Create drush bin symlink.

15 file:

16 src: /opt/drush/drush

17 dest: /usr/local/bin/drush

18 state: link

Separating all the tasks into separate task files means you’ll have more files to
manage for your playbook, but it helps keep the main playbook more compact. It’s
easier to see all the installation and configuration steps the playbook contains, and it
separates tasks into individual, maintainable groupings. Instead of having to browse
one playbook with twenty-three separate tasks, you now maintain eight included
files with two to five tasks, each.

It’s much easier to maintain small groupings of related tasks than one long playbook.
However, there’s no reason to try to start writing a playbook with lots of individual
includes. Most of the time, it’s best to start with a monolithic playbook while you’re
working on the setup and configuration details, then move sets of tasks out to
included files after you start seeing logical groupings.

You can also use tags (demonstrated in the previous chapter) to limit the playbook
run to a certain task file. Using the above example, if you wanted to add a ‘drush’
tag to the included drush file (so you could run ansible-playbook playbook.yml

--tags=drush and only run the drush tasks), you can change line 20 to the following:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 131

20 - import_tasks: tasks/drush.yml tags=drush

You can find the entire example Drupal LAMP server
playbook using include files in this book’s code repository at
https://github.com/geerlingguy/ansible-for-devops⁶⁷, in the includes

directory.

You can’t use variables for task include file names when using import_-

tasks (like you could with include_vars directives, e.g. include_vars:
"{{ ansible_os_family }}.yml" as a task, or with vars_files), but you
can when using include_tasks (dynamically). In either case, it might be
easier to accomplish conditional task inclusion using a different playbook
structure, or roles, which we will discuss next.

Roles

Including playbooks inside other playbooks makes your playbook organization
a little more sane, but once you start wrapping up your entire infrastructure’s
configuration in playbooks, you might end up with something resembling Russian
nesting dolls.

Wouldn’t it be nice if there were a way to take bits of related configuration, and
package them together nicely? Additionally, what if we could take these packages
(often configuring the same thing on many different servers) and make them flexible
so that we can use the same package throughout our infrastructure, with slightly
different settings on individual servers or groups of servers?

Ansible Roles can do all that and more!

Let’s dive into what makes an Ansible role by taking one of the playbook examples
from Chapter 4 and splitting it into a more flexible structure using roles.

⁶⁷https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 132

Role scaffolding

Instead of requiring you to explicitly include certain files and playbooks in a role,
Ansible automatically includes any main.yml files inside specific directories that
make up the role.

There are only two directories required to make a working Ansible role:

role_name/

meta/

tasks/

If you create a directory structure like the one shown above, with a main.yml file in
each directory, Ansible will run all the tasks defined in tasks/main.yml if you call
the role from your playbook using the following syntax:

1 ---

2 - hosts: all

3 roles:

4 - role_name

Your roles can live in a couple different places: the default global Ansible role path
(configurable in /etc/ansible/ansible.cfg), or a roles folder in the same directory
as your main playbook file.

Another simple way to build the scaffolding for a role is to use the
command: ansible-galaxy role init role_name. Running this command
creates an example role in the current working directory, which you can
modify to suit your needs. Using the init command also ensures the role
is structured correctly in case you want to someday contribute the role to
Ansible Galaxy.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 133

Building your first role

Let’s clean up the Node.js server example from Chapter four, and break out one of the
main parts of the configuration—installing Node.js and any required npm modules.

Create a roles folder in the same directory as the main playbook.yml file like we
created in Chapter 4’s first example. Inside the roles folder, create a new folder:
nodejs (which will be our role’s name). Create two folders inside the nodejs role
directory: meta and tasks.

Inside the meta folder, add a simple main.yml file with the following contents:

1 ---

2 dependencies: []

The meta information for your role is defined in this file. In basic examples and
simple roles, you just need to list any role dependencies (other roles that are required
to be run before the current role can do its work). You can add more to this file to
describe your role to Ansible and to Ansible Galaxy, but we’ll dive deeper into meta
information later. For now, save the file and head over to the tasks folder.

Create a main.yml file in this folder, and add the following contents (basically copying
and pasting the configuration from the Chapter 4 example):

1 ---

2 - name: Install Node.js (npm plus all its dependencies).

3 dnf: name=npm state=present enablerepo=epel

4

5 - name: Install forever module (to run our Node.js app).

6 npm: name=forever global=yes state=present

The Node.js directory structure should now look like the following:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 134

1 nodejs-app/

2 app/

3 app.js

4 package.json

5 playbook.yml

6 roles/

7 nodejs/

8 meta/

9 main.yml

10 tasks/

11 main.yml

You now have a complete Ansible role that you can use in your node.js server
configuration playbook. Delete the Node.js app installation lines from playbook.yml,
and reformat the playbook so the other tasks run first (in a pre_tasks: section instead
of tasks:), then the role, then the rest of the tasks (in the main tasks: section).
Something like:

pre_tasks:

EPEL/GPG setup, firewall configuration...

roles:

- nodejs

tasks:

Node.js app deployment tasks...

You can view the full example of this playbook in the ansible-for-devops
code repository⁶⁸.

Once you finish reformatting the main playbook, everything will run exactly the
same during an ansible-playbook run, with the exception of the tasks inside the
nodejs role being prefixed with nodejs | [Task name here].

⁶⁸https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/

https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/
https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/
https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 135

This little bit of extra data shown during playbook runs is useful because it
automatically prefixes tasks with the role that provides them, without you having
to add in descriptions as part of the name values of the tasks.

Our role isn’t all that helpful at this point, though, because it still does only one
thing, and it’s not really flexible enough to be used on other servers that might need
different Node.js modules to be installed.

More flexibility with role vars and defaults

To make our role more flexible, we can make it use a list of npm modules instead of
a hardcoded value, then allow playbooks using the role to provide their own module
list variable to override our role’s default list.

When running a role’s tasks, Ansible picks up variables defined in a role’s vars/main.yml
file and defaults/main.yml (I’ll get to the differences between the two later), but will
allow your playbooks to override the defaults or other role-provided variables if you
want.

Modify the tasks/main.yml file to use a list variable and iterate through the list to
install as many packages as your playbook wants:

1 ---

2 - name: Install Node.js (npm plus all its dependencies).

3 dnf: name=npm state=present enablerepo=epel

4

5 - name: Install npm modules required by our app.

6 npm: name={{ item }} global=yes state=present

7 with_items: "{{ node_npm_modules }}"

Let’s provide a sane default for the new node_npm_modules variable in defaults/main.yml:

1 ---

2 node_npm_modules:

3 - forever

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 136

Now, if you run the playbook as-is, it will still do the exact same thing—install the
forevermodule. But since the role is more flexible, we could create a new playbook
like our first, but add a variable (either in a vars section or in an included file via
vars_files) to override the default, like so:

node_npm_modules:

- forever

- async

- request

When you run the playbook with this custom variable (we didn’t change anything
with our nodejs role), all three of the above npm modules will be installed.

Hopefully you’re beginning to see how this can be powerful!

Imagine if you had a playbook structure like:

1 ---

2 - hosts: appservers

3 roles:

4 - dnf-repo-setup

5 - firewall

6 - nodejs

7 - app-deploy

Each one of the roles lives in its own isolated world, and can be shared with other
servers and groups of servers in your infrastructure.

• A dnf-repo-setup role could enable certain repositories and import their GPG
keys.

• A firewall role could have per-server or per-inventory-group options for ports
and services to allow or deny.

• An app-deploy role could deploy your app to a directory (configurable per-
server) and set certain app options per-server or per-group.

These things are easy to manage when you have small bits of functionality separated
into different roles. Instead of managing 100+ lines of playbook tasks, and manually

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 137

prefixing every name: with something like “Common |” or “App Deploy |”, you now
manage a few roles with 10-20 lines of YAML each.

On top of that, when you’re building your main playbooks, they can be extremely
simple (like the above example), enabling you to see everything being configured
and deployed on a particular server without scrolling through dozens of included
playbook files and hundreds of tasks.

Variable precedence: Note that Ansible handles variables placed in in-
cluded files in defaults with less precedence than those placed in vars.
If you have certain variables you need to allow hosts/playbooks to easily
override, you should probably put them into defaults. If they are common
variables that should almost always be the values defined in your role,
put them into vars. For more on variable precedence, see the “Variable
Precedence” section in the previous chapter.

Other role parts: handlers, files, and templates

Handlers

In one of the prior examples, we introduced handlers—tasks that could be called via
the notify option after any playbook task resulted in a change—and an example
handler for restarting Apache was given:

handlers:

- name: restart apache

service: name=httpd state=restarted

In Ansible roles, handlers are first-class citizens, alongside tasks, variables, and
other configuration. You can store handlers directly inside a main.yml file inside
a role’s handlers directory. So if we had a role for Apache configuration, our
handlers/main.yml file could look like this:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 138

1 ---

2 - name: restart apache

3 service: name=httpd state=restarted

You can call handlers defined in a role’s handlers folder just like those included
directly in your playbooks (e.g. notify: restart apache).

Files and Templates

For the following examples, let’s assume our role is structured with files and
templates inside files and templates directories, respectively:

roles/

example/

files/

example.conf

meta/

main.yml

templates/

example.xml.j2

tasks/

main.yml

when copying a file directly to the server, add the filename or the full path from
within a role’s files directory, like so:

- name: Copy configuration file to server directly.

copy:

src: example.conf

dest: /etc/myapp/example.conf

mode: 0644

Similarly, when specifying a template, add the filename or the full path from within
a role’s templates directory, like so:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 139

- name: Copy configuration file to server using a template.

template:

src: example.xml.j2

dest: /etc/myapp/example.xml

mode: 0644

The copymodule copies files fromwithin themodule’s files folder, and the template
module runs given template files through the Jinja templating engine, merging in any
variables available during your playbook run before copying the file to the server.

Organizing more complex and cross-platform roles

For simple package installation and configuration roles, you can get by with placing
all tasks, variables, and handlers directly in the respective main.yml file Ansible
automatically loads. But you can also include other files from within a role’s
main.yml files if needed.

As a rule of thumb, I keep my playbook and role task files under 100 lines of YAML
if at all possible. It’s easier to keep the entire set of tasks in my head while making
changes or fixing bugs. If I start nearing that limit, I usually split the tasks into logical
groupings, and include files from the main.yml file.

Let’s take a look at the way my geerlingguy.apache role is set up (it’s available on
Ansible Galaxy⁶⁹ and can be downloaded to your roles directory with the command
ansible-galaxy role install geerlingguy.apache; we’ll discuss Ansible Galaxy
itself later).

Initially, the role’s main tasks/main.yml file looked something like the following:

⁶⁹https://galaxy.ansible.com/geerlingguy/apache/

https://galaxy.ansible.com/geerlingguy/apache/
https://galaxy.ansible.com/geerlingguy/apache/
https://galaxy.ansible.com/geerlingguy/apache/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 140

1 ---

2 - name: Ensure Apache is installed (via apt).

3

4 - name: Configure Apache with lineinfile.

5

6 - name: Enable Apache modules.

Soon after creating the role, though, I wanted tomake the role workwith both Debian
and RHEL hosts. I could’ve added two sets of tasks in the main.yml file, resulting in
twice the number of tasks and a bunch of extra when statements:

1 ---

2 - name: Ensure Apache is installed (via apt).

3 when: ansible_os_family == 'Debian'

4

5 - name: Ensure Apache is installed (via dnf).

6 when: ansible_os_family == 'RedHat'

7

8 - name: Configure Apache with lineinfile (Debian).

9 when: ansible_os_family == 'Debian'

10

11 - name: Configure Apache with lineinfile (RHEL).

12 when: ansible_os_family == 'RedHat'

13

14 - name: Enable Apache modules (Debian).

15 when: ansible_os_family == 'Debian'

16

17 - name: Other OS-agnostic tasks...

If I had gone this route, and continued with the rest of the playbook tasks in one file,
I would’ve quickly surpassed my informal 100-line limit. So I chose to use includes
in my main tasks file:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 141

1 ---

2 - name: Include OS-specific variables.

3 include_vars: "{{ ansible_os_family }}.yml"

4

5 - name: Include OS-specific setup tasks.

6 include_tasks: setup-{{ ansible_os_family }}.yml

7

8 - name: Other OS-agnostic tasks...

Two important things to notice about this style of distribution-specific inclusion:

1. When including vars and tasks files (with include_vars or include_tasks), you
can actually use variables in the name of the file. This is handy in many situ-
ations; here we’re including a vars file in the format distribution_name.yml.
For our purposes, since the role will be used on Debian and RHEL-based hosts,
we can create Debian.yml and RedHat.yml files in our role’s defaults and vars

folders, and put distribution-specific variables there.
2. For the tasks, we include tasks files in the role’s tasks directory, for example

setup-Debian.yml or setup-RedHat.yml.

After setting things up this way, I put RHEL-specific tasks (like dnf tasks) into
tasks/setup-RedHat.yml, and Debian and Ubuntu-specific tasks (like apt tasks) into
tasks/setup-Debian.yml. There are other ways of making roles work cross-platform,
but using distribution-specific variables files and included task files is one of the
simplest.

Now this Apache role can be used across different distributions, and with clever
usage of variables in tasks and in configuration templates, it can be used in a wide
variety of infrastructure that needs Apache installed.

Ansible Galaxy

Ansible roles are powerful and flexible; they allow you to encapsulate sets of
configuration and deployable units of playbooks, variables, templates, and other files,
so you can easily reuse them across different servers.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 142

It’s annoying to have to start from scratch every time, though; wouldn’t it be better
if people could share roles for commonly-installed applications and services?

Enter Ansible Galaxy⁷⁰.

Ansible Galaxy, or just ‘Galaxy’, is a repository of community-contributed Ansible
content. There are thousands of roles available which can configure and deploy com-
mon applications, and they’re all available through the ansible-galaxy command.

Galaxy offers the ability to add, download, and rate roles. With an account, you can
contribute your own roles or rate others’ roles (though you don’t need an account to
use roles).

What about Collections?

In 2019, collections were added to Ansible Galaxy. They offer a new way of
packaging multiple roles together (along with modules and plugins), and
we will cover them in the next chapter. In this chapter, we’re discussing
roles on Galaxy.

Getting roles from Galaxy

One of the primary functions of the ansible-galaxy command is retrieving roles
from Galaxy. Roles must be downloaded before they can be used in playbooks.

Remember the basic LAMP (Linux, Apache, MySQL and PHP) server we installed
earlier in the book? Let’s create it again, but this time, using a few roles from Galaxy:

$ ansible-galaxy role install geerlingguy.apache \

geerlingguy.mysql geerlingguy.php

The latest version of a role will be downloaded if no version is specified.
To specify a version, add the version after the role name, for example: $
ansible-galaxy role install geerlingguy.apache,2.1.2.

⁷⁰https://galaxy.ansible.com/

https://galaxy.ansible.com/
https://galaxy.ansible.com/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 143

Ansible Galaxy is still evolving rapidly, and has seen many improvements.
There are a few areas where Galaxy could use some improvement (like
browsing for roles by Operating System in the online interface, or auto-
matically downloading roles that are included in playbooks), but most of
these little bugs or rough spots will be fixed in time. Please check Ansible
Galaxy’s About⁷¹ page and stay tuned to Ansible’s blog for the latest
updates.

Using role requirements files to manage dependencies

If your infrastructure configuration requires five, ten, fifteen or more Ansible roles,
installing them all via ansible-galaxy role install commands can be exhausting.
Additionally, if you host roles internally (e.g. via an internal Git or Mercurial
repository), you can’t install the roles through Ansible Galaxy. You can, however,
pass the ansible-galaxy command a “requirements” file with the -r option to
automatically download all dependencies.

Ansible allows a simple .txt format that is very basic (though this format is
deprecated and may be removed), but you should use the more standard and
expressive YAML format, which allows you to install roles from Ansible Galaxy,
GitHub, an HTTP download, BitBucket, or your own repository. It also allows
you to specify the path into which the roles should be downloaded. An example
requirements.yml file looks like this:

1 ---

2 roles:

3 # From Ansible Galaxy, latest version.

4 - name: geerlingguy.firewall

5

6 # From Ansible Galaxy, specifying the version.

7 - name: geerlingguy.php

8 version: 4.3.1

9

10 # From GitHub, with a custom name and version.

⁷¹https://galaxy.ansible.com/intro

https://galaxy.ansible.com/intro
https://galaxy.ansible.com/intro

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 144

11 - src: https://github.com/geerlingguy/ansible-role-passenger

12 name: passenger

13 version: 2.0.0

14

15 # From a web server, with a custom name.

16 - src: https://www.example.com/ansible/roles/my-role-name.tar.gz

17 name: my-role

To install the roles defined in a requirements file, use the command ansible-galaxy

install -r requirements.yml. For more documentation on Ansible requirements
files, see the official documentation: Installing Multiple Roles From a File⁷².

A LAMP server in nine lines of YAML

With the Apache, MySQL, and PHP roles installed, we can quickly create a LAMP
server. This example assumes you already have an Ubuntu-based linux VM or server
booted and can connect to it or run Ansible as a provisioner via Vagrant on it, and
that you’ve run the ansible-galaxy role install command above to download the
required roles.

First, create an Ansible playbook named lamp.yml with the following contents:

1 ---

2 - hosts: all

3 become: yes

4

5 roles:

6 - geerlingguy.mysql

7 - geerlingguy.apache

8 - geerlingguy.php

9 - geerlingguy.php-mysql

Now, run the playbook against a host:

⁷²https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file

https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file
https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 145

$ ansible-playbook -i path/to/custom-inventory lamp.yml

After a few minutes, an entire LAMP server should be set up and running. If you
add in a few variables, you can configure virtualhosts, PHP configuration options,
MySQL server settings, etc.

On RHEL servers, you should add the role geerlingguy.repo-epel to
the roles list after installing it via ansible-galaxy, because some of the
required PHP packages are only available in EPEL⁷³.

We’ve effectively reduced about thirty lines of YAML (from previous examples
dealing with LAMP or LAMP-like servers) down to four. Obviously, the roles have
extra code in them, but the power here is in abstraction. Since most companies
have many servers using similar software, but with slightly different configurations,
having centralized, flexible roles saves a lot of repetition.

You could think of Galaxy roles as glorified packages; they not only install software,
but they configure it exactly how you want it, every time, with minimal adjustment.
Additionally, many of these roles work across different flavors of Linux and UNIX,
so you have better configuration portability!

A Solr server in seven lines of YAML

Let’s grab a couple more roles and build an Apache Solr search server, which requires
Java to be installed and configured.

$ ansible-galaxy role install geerlingguy.java geerlingguy.solr

Then create a playbook named solr.yml with the following contents:

⁷³https://fedoraproject.org/wiki/EPEL

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 146

1 ---

2 - hosts: all

3 become: yes

4

5 roles:

6 - geerlingguy.java

7 - geerlingguy.solr

Now we have a fully-functional Solr server, and we could add some variables to
configure it exactly how we want, by using a non-default port, or changing the
memory allocation for Solr.

A role’s page on the Ansible Galaxy website highlights available variables for setting
things like what version of Solr to install, where to install it, etc. For an example, view
the geerlingguy.solr Galaxy page⁷⁴.

You can build a wide variety of servers with minimal effort with existing contributed
roles on Galaxy. Instead of having to maintain lengthy playbooks and roles unique to
each server, Galaxy lets you build a list of the required roles, and a few variables that
set up the servers with the proper versions and paths. Configuration management
with Ansible Galaxy becomes true configuration management—you get to spend
more time managing your server’s configuration, and less time on packaging and
building individual services!

Helpful Galaxy commands

Some other helpful ansible-galaxy commands you might use from time to time:

• ansible-galaxy role list displays a list of installed roles, with version
numbers

• ansible-galaxy role remove [role] removes an installed role
• ansible-galaxy role init can be used to create a role template suitable for
submission to Ansible Galaxy

You can configure the default pathwhere Ansible roles will be downloaded by editing
your ansible.cfg configuration file (normally located in /etc/ansible/ansible.cfg),
and setting a roles_path in the [defaults] section.

⁷⁴https://galaxy.ansible.com/geerlingguy/solr/

https://galaxy.ansible.com/geerlingguy/solr/
https://galaxy.ansible.com/geerlingguy/solr/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 147

Contributing to Ansible Galaxy

If you’ve been working on some useful Ansible roles, and you’d like to share them
with others, all you need to do is make sure they follow Ansible Galaxy’s basic
template (especially within the meta/main.yml and README.md files). To get started,
use ansible-galaxy role init to generate a basic Galaxy template, and make your
own role match the Galaxy template’s structure.

Then push your role up to a new project on GitHub (I usually name my Galaxy roles
like ansible-role-[rolename], so I can easily see them when browsing my repos on
GitHub), and add a new role while logged into galaxy.ansible.com, under the ‘My
Content’ tab.

Summary

Using includes and Ansible roles organizes Playbooks and makes them maintainable.
This chapter introduced different ways of including tasks, playbooks, and handlers,
the power and flexible structure of roles, and how you can utilize Ansible Galaxy,
the community repository of configurable Ansible roles that do just about anything.

/ When the only tool you own is a hammer, \

| every problem begins to resemble a |

\ nail. (Abraham Maslow) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 7 - Ansible Plugins and
Content Collections
Ansible roles are helpful when you want to organize tasks and related variables and
handlers in a maintainable way. And you can technically distribute Ansible plugins—
Python code to extend Ansible’s functionality with new modules, filters, inventory
plugins, and more—but adding this kind of content to a role is not ideal, and in a
sense, overloads the role by putting both Python code and Ansible YAML into the
same entity.

This is why, in Ansible 2.8, Collections, or more formally, Content Collections, were
introduced.

Collections allow the gathering of Ansible plugins, roles, and even playbooks⁷⁵ into
one entity, in a more structured way that Ansible, Ansible Galaxy, and Automation
Hub can scan and consume.

Creating our first Ansible Plugin — A Jinja
Filter

In many Ansible tasks, you may find yourself building some relatively complex logic
to check for a set of conditions. If your Jinja conditionals start making your YAML
files look more like a hybrid of Python and YAML, it’s a good time to consider
extracting the Python logic out into an Ansible plugin.

We’re going to use an extremely basic example. Let’s say I have a playbook, main.yml,
and I have a task in it that needs to assert that a certain variable is a proper
representation of the color ‘blue’ for some generated CSS:

⁷⁵Note that as of Ansible 2.10, there is no formal specification for how to define playbooks in Collections.

Chapter 7 - Ansible Plugins and Content Collections 149

1 ---

2 - hosts: all

3

4 vars:

5 my_color_choice: blue

6

7 tasks:

8 - name: "Verify {{ my_color_choice }} is a form of blue."

9 assert:

10 that: my_color_choice == 'blue'

This works great… until you have another valid representation of blue. Let’s say a
user set my_color_choice: '#0000ff'. You could still use the same task, but you’d
need to add to the logic:

1 ---

2 - hosts: all

3

4 vars:

5 my_color_choice: blue

6

7 tasks:

8 - name: "Verify {{ my_color_choice }} is a form of blue."

9 assert:

10 that: >

11 my_color_choice == 'blue'

12 or my_color_choice == '#0000ff'

Now, someone else might come along with the equally-valid option #00f. Time to
add more logic to the task—or not.

Instead, we can write a filter plugin. Filter plugins allow you to verify data, and are
some of the simpler types of plugins you’ll find in Ansible.

In our case, we want a filter that allows us to write in our playbook:

Chapter 7 - Ansible Plugins and Content Collections 150

1 ---

2 - hosts: all

3

4 vars:

5 my_color_choice: blue

6

7 tasks:

8 - name: "Verify {{ my_color_choice }} is a form of blue."

9 assert:

10 that: my_color_choice is blue

So how can we write a test filter so the is blue part in the assertion works?

The simplest way is to create a test_plugins folder alongside the main.yml playbook,
create a blue.py file, and add the following Python code inside:

1 # Ansible custom 'blue' test plugin definition.

2

3 def is_blue(string):

4 ''' Return True if a valid CSS value of 'blue'. '''

5 blue_values = [

6 'blue',

7 '#0000ff',

8 '#00f',

9 'rgb(0,0,255)',

10 'rgb(0%,0%,100%)',

11]

12 if string in blue_values:

13 return True

14 else:

15 return False

16

17 class TestModule(object):

18 ''' Return dict of custom jinja tests. '''

19

20 def tests(self):

Chapter 7 - Ansible Plugins and Content Collections 151

21 return {

22 'blue': is_blue

23 }

This book isn’t a primer on Python programming, but as a simple explanation, the
first line is a comment saying what this file contains. It’s not a requirement, but I like
to always have something at the top of my code files introducing the file’s purpose.

On line 3, the is_blue function is defined. It contains some logic which takes one
parameter (a string), and returns True if the string is a valid form of blue, or False if
not.

In this case, it’s a simple function, but in many test plugins, the logic is more complex.
The important thing to note is that this logic (which benefits from Python’s language
features) is more maintainable as a plugin, rather than complex inline Jinja syntax
in an Ansible playbook.

Ansible plugins are also unit testable, unlike conditionals in YAML files, whichmeans
you can test them without having to run a whole Ansible playbook to verify they
are working.

Line 17 defines TestModule, and Ansible calls the tests method in this class in any
Python file inside the test_plugins directory, and loads any of the returned keys as
available Jinja tests—in our case, blue is the name of the Jinja test, and when a user
tests with blue, Ansible maps that test back to the is_blue function.

You can store plugins in different paths to get Ansible to pick them up.
In our example, a test plugin was placed inside a test_plugins directory,
which Ansible scans for test plugins by default when running a playbook.
See Adding modules and plugins locally⁷⁶ for more options for local plugin
discovery.

For test plugins, you can have more than one defined in the same Python
file. And the Python file’s name doesn’t need to correspond to the plugin
name. But for other plugins and Ansible modules, the rules are different.
Consult the Developing plugins⁷⁷ documentation for more information.

⁷⁶https://docs.ansible.com/ansible/latest/dev_guide/developing_locally.html
⁷⁷https://docs.ansible.com/ansible/latest/dev_guide/developing_plugins.html

https://docs.ansible.com/ansible/latest/dev_guide/developing_locally.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_locally.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_plugins.html

Chapter 7 - Ansible Plugins and Content Collections 152

If you run the main.yml playbook (even against localhost), it should now be able to
verify that ‘blue’ is indeed blue:

$ ansible-playbook -i localhost, -c local main.yml

PLAY [all] **

TASK [Gathering Facts] **

ok: [localhost]

TASK [Verify blue is a form of blue.] *****************************

ok: [localhost] => {

"changed": false,

"msg": "All assertions passed"

}

PLAY RECAP **

localhost : ok=2 changed=0 unreachable=0 failed=0 ignored=0

Over time, you may find that you want to share this plugin with other playbooks,
especially if it could be helpful in many of the projects you maintain.

The easiest way is to copy and paste the plugin code into each playbook’s directory,
but that leads to code duplication and will likely result in the Python code being
impossible to keep in sync as the plugin is modified in different playbooks over time.

Traditionally, people would share Ansible modules and plugins as part of roles, as
you could place modules inside a special library directory in a role, and plugins
in directories like test_plugins in the role (just like in a playbook). This advanced
usage is mentioned in the Ansible documentation: Embedding Modules and Plugins
In Roles⁷⁸.

But roles are primarily designed for sharing Ansible tasks, handlers, and associated
variables—their architecture is not as great for sharing plugins and modules.

So where does that leave us?
⁷⁸https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#embedding-modules-and-plugins-

in-roles

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#embedding-modules-and-plugins-in-roles
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#embedding-modules-and-plugins-in-roles
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#embedding-modules-and-plugins-in-roles
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#embedding-modules-and-plugins-in-roles

Chapter 7 - Ansible Plugins and Content Collections 153

The history of Ansible Content Collections

Well, in 2014, when Ansible Galaxy was created to allow roles to be shared, Ansible
had less than 300 modules in Ansible’s core repository, and the decision was made
to split the modules off from Ansible core⁷⁹ to make maintenance easier, since issues
and PRs were overwhelming the small core development team.

After a couple years, the modules were merged back in⁸⁰, because maintaining three
separate git repositories using submodules and trying to track three separate issue
and PR queues was a worse maintenance nightmare than what they had to begin
with!

In 2017, Galaxy started to burst at the seams a little, as more users were contributing
roles, and also trying to share module and plugin code by stashing them inside a
role’s structure.

Also in 2017, as Red Hat expanded Ansible’s scope to more broadly embrace
networking, security, and Windows automation, the amount of maintenance burden
pretty much overwhelmed the core team’s ability to cope with the now thousands of
modules being maintained in Ansible’s core repository:

⁷⁹https://groups.google.com/forum/#!searchin/ansible-project/core\protect\char”0024\relax20extras\protect\
char”0024\relax20split%7Csort:relevance/ansible-project/TUL_Bfmhr-E/rshKe30KdD8J

⁸⁰https://groups.google.com/forum/#!searchin/ansible-project/repository\protect\char”0024\relax20merge%7Csort:
relevance/ansible-project/9WpXraBSLz8/q6HYIszBBwAJ

https://groups.google.com/forum/#!searchin/ansible-project/core\protect \char "0024\relax 20extras\protect \char "0024\relax 20split%7Csort:relevance/ansible-project/TUL_Bfmhr-E/rshKe30KdD8J
https://groups.google.com/forum/#!searchin/ansible-project/repository\protect \char "0024\relax 20merge%7Csort:relevance/ansible-project/9WpXraBSLz8/q6HYIszBBwAJ
https://groups.google.com/forum/#!searchin/ansible-project/core\protect \char "0024\relax 20extras\protect \char "0024\relax 20split%7Csort:relevance/ansible-project/TUL_Bfmhr-E/rshKe30KdD8J
https://groups.google.com/forum/#!searchin/ansible-project/core\protect \char "0024\relax 20extras\protect \char "0024\relax 20split%7Csort:relevance/ansible-project/TUL_Bfmhr-E/rshKe30KdD8J
https://groups.google.com/forum/#!searchin/ansible-project/repository\protect \char "0024\relax 20merge%7Csort:relevance/ansible-project/9WpXraBSLz8/q6HYIszBBwAJ
https://groups.google.com/forum/#!searchin/ansible-project/repository\protect \char "0024\relax 20merge%7Csort:relevance/ansible-project/9WpXraBSLz8/q6HYIszBBwAJ

Chapter 7 - Ansible Plugins and Content Collections 154

Ansible core backlog growth

The graph above comes from Greg Sutcliffe’s blog, in a post titled Collections, The
Backlog View⁸¹. In the post, he explores the data behind a major decision to shift
Ansible’s plugin and module development burden off the small Ansible core team
and into a distributed set of collections.

Mazer⁸² was introduced in 2018 to try experiment with new ways of managing
groupings of Ansible content—roles, modules, and plugins. And in the Ansible 2.9
release in 2020, most of Mazer’s functionality was merged into the already-existing
ansible-galaxy command line utility that ships with Ansible.

Mazer was a character in the book Ender’s Game, from which the name
‘Ansible’ was derived. A mazer is also a hardwood drinking vessel.

And between the release of Ansible 2.8 and 2.10, the Ansible code was restructured,
as explained in the blog post Thoughts on Restructuring the Ansible Project⁸³. The

⁸¹https://emeraldreverie.org/2020/03/02/collections-the-backlog-view/
⁸²https://github.com/ansible/mazer
⁸³https://www.ansible.com/blog/thoughts-on-restructuring-the-ansible-project

https://emeraldreverie.org/2020/03/02/collections-the-backlog-view/
https://emeraldreverie.org/2020/03/02/collections-the-backlog-view/
https://github.com/ansible/mazer
https://www.ansible.com/blog/thoughts-on-restructuring-the-ansible-project
https://emeraldreverie.org/2020/03/02/collections-the-backlog-view/
https://github.com/ansible/mazer
https://www.ansible.com/blog/thoughts-on-restructuring-the-ansible-project

Chapter 7 - Ansible Plugins and Content Collections 155

Ansible core repository will still hold a few foundational plugins and modules,
vendor-supported and Red Hat-supported modules will be split out into their own
collections, and community modules will be in their own collections.

This decision does run against the grain of the ‘batteries included’ philosophy,
but the problem is that Ansible has grown to be one of the largest open source
projects in existence, and it’s no longer a good idea to have modules for Cisco
networking switches that require special expertise in the same repository as modules
for developer build tools like PHP’s Composer or Node.js’ NPM.

But users are still able to get all a ‘batteries included’ version of Ansible—its what
you’ve used most of this book! The difference is you can also strap on extra batteries,
of any type (not just roles), more easily with collections.

The Anatomy of a Collection

So what’s in a collection?

At the most basic level, you need to put a collection in the right directory, otherwise
Ansible’s namespace-based collection loader (based on Python’s PEP 420⁸⁴ standard)
will not be able to see it.

Our goal is to move the blue test plugin from earlier in this chapter into a new
collection, and use the plugin in that collection in our playbook.

We need to create a collection so we can put the blue plugin inside. In this example,
since the collection is intended to be used local to this playbook, and since it’s meant
to hold color-related functionality, we can call the collection local.colors, which
means the collection namespace will be local (denoting a collection that’s local to
this playbook), and the collection name will be colors.

As with Ansible roles, new collections can be scaffolded using the ansible-galaxy

command, in this case:

⁸⁴https://www.python.org/dev/peps/pep-0420/

https://www.python.org/dev/peps/pep-0420/
https://www.python.org/dev/peps/pep-0420/

Chapter 7 - Ansible Plugins and Content Collections 156

$ ansible-galaxy collection init local.colors --init-path ./collections\

/ansible_collections

You might be wondering why we created an extra directory ansible_-

collections to hold our new namespace and collection—and why the
collection has to be in a namespace, since it’s just a local collection. It’s
required so Ansible can use Python’s built-in namespace-based loader to
load content from the collection.

After running this command, you should see the following contents in your playbook
directory:

ansible.cfg

collections/

ansible_collections/

local/

colors/

README.md

docs/

galaxy.yml

plugins/

roles/

main.yml

test_plugins/

blue.py

The new collection includes all the necessary structure of a collection, but if you
don’t need one of the docs, plugins, or roles directories, you could delete them.

The most important thing is the galaxy.yml file, which is required so Ansible can
read certain metadata about the Collection when it is loaded. For local collections
like this one, the defaults are fine, but later, if you want to contribute a collection to
Ansible Galaxy and share it with others, you would need to adjust the configuration
in this file.

Chapter 7 - Ansible Plugins and Content Collections 157

Putting our Plugin into a Collection

To move our blue.py plugin into the collection, we’ll need to create a test directory
inside the collection’s plugins directory (since blue is a test plugin), and then move
the blue.py plugin into that folder:

$ mkdir collections/ansible_collections/local/colors/plugins/test

$ mv test_plugins/blue.py collections/ansible_collections/local/colors/\

plugins/test/blue.py

At this point if you were to run the main.yml playbook, it would fail, with the
message:

TASK [Verify blue is a form of blue.] ****************************

fatal: [localhost]: FAILED! => {"msg": "The conditional check

'my_color_choice is blue' failed. The error was: template error

while templating string: no test named 'blue'. String: {% if

my_color_choice is blue %} True {% else %} False {% endif %}"}

The problem is you need to also modify your Playbook and make sure Ansible knows
you want the blue module in the local.colors collection.

There are two ways you can do this. For collection modules and roles, you could
leave the playbook mostly unmodified, and just add a collections section in the
play, like:

1 ---

2 - hosts: all

3

4 collections:

5 - local.colors

6

7 vars:

8 my_color_choice: blue

Chapter 7 - Ansible Plugins and Content Collections 158

But in this case, we’re using a test plugin, not a regular module or role, so we need
to refer to the module in a special way, using its ‘Fully Qualified Collection Name’
(FQCN), which in this test plugin’s case would be local.colors.blue.

So the task should be changed to look like this:

7 tasks:

8 - name: "Verify {{ my_color_choice }} is a form of blue."

9 assert:

10 that: my_color_choice is local.colors.blue

Now, if you run the playbook, it will run the same as before, but using the module
in the local.colors collection.

Any content you add to the collection—plugins, modules, or roles—can be called the
same way. Whereas for things built into Ansible or local to your playbook you can
call them with modulename or rolename, for things from collections you should call
them by their FQCN.

Unless you plan on sharing your collection code with other projects or with the entire
Ansible community, it may be easier to maintain custom playbook-specific content
like plugins, modules, and roles individually, inside local playbook directories like
we did with the test_plugins or with roles in previous chapters.

Going deeper developing collections

This example is rather simple, and doesn’t even include useful components like
documentation for the blue test plugin. There are many more things you can do with
collections, including adding roles, modules, and someday maybe even playbooks.

There are different requirements and limitations to roles when they are part of a
collection (vs built separately in a playbook’s roles/ directory, or installed from
Galaxy), and those are listed in Ansible’s documentation: Developing collections⁸⁵.

⁸⁵https://docs.ansible.com/ansible/latest/dev_guide/developing_collections.html

https://docs.ansible.com/ansible/latest/dev_guide/developing_collections.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_collections.html

Chapter 7 - Ansible Plugins and Content Collections 159

Collections on Automation Hub and Ansible
Galaxy

Just like roles, collections can be shared with the entire community on Ansible
Galaxy, or in Red Hat’s Automation Hub, which is part of Red Hat’s Ansible
Automation Platform.

If you browse Galaxy or Automation Hub and find a collection you’d like to use, you
can use the ansible-galaxy CLI to install the collection similar to how you’d install
a role:

$ ansible-galaxy collection install geerlingguy.k8s

This command would install the geerlingguy.k8s collection into Ansible’s default
collection path. We’ll talk a little more about collection paths in a bit, but first, you
can also specify collections—just like roles—in a requirements.yml file.

For example, if youwanted to install the same collection, but using a requirements.yml
file, you could specify it like so:

collections:

- name: geerlingguy.k8s

And then, before running your playbook that uses the collection, install all the
required collections with ansible-galaxy:

$ ansible-galaxy install -r requirements.yml

Ansible 2.9 and earlier required installing role requirements separately
from collection requirements, and would not install any collections if you
called ansible-galaxy install by itself. If you’re running Ansible 2.9
or earlier, you need to run the command ansible-galaxy collection

install -r requirements.yml.

Once the collection is installed, you can call content from it in any playbook using
the FQCN, like so:

Chapter 7 - Ansible Plugins and Content Collections 160

1 ---

2 - hosts: all

3

4 roles:

5 - geerlingguy.k8s.helm

Collection version constraints

For many playbooks, installing a specific version of a collection guarantees better
stability. And since contributed collections—unlike roles—require the use of semantic
versioning, you can even specify version constraints when installing a collection from
Galaxy or Automation Hub, either on the command line or in a requirements.yml:

collections:

- name: geerlingguy.k8s

version: >=0.10.0,<0.11.0

This version constraint tells Ansible to install any version in the 0.10.x series, but
not any version in 0.11.x or newer.

For maximum stability, it is important to set a version constraint⁸⁶ for any content
you rely on. As long as the content maintainers follow the rules of semantic
versioning, it should be extremely rare a playbook breaks due to any updated
collection content it uses.

When a newer major version of a collection you use is released, you can bump the
version constraint and test it when you’re ready, instead of having the latest version
always installed.

Where are collections installed?

When you install a collection from Ansible Galaxy or Automation Hub, Ansible uses
the configuration directive collections_path to determine where collections should
be installed.

⁸⁶https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#installing-an-older-version-of-a-
collection

https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#installing-an-older-version-of-a-collection
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#installing-an-older-version-of-a-collection
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#installing-an-older-version-of-a-collection

Chapter 7 - Ansible Plugins and Content Collections 161

By default, they’ll be installed in one of the following locations:

• ∼/.ansible/collections
• /usr/share/ansible/collections

But you can override the setting in your own projects by setting the ANSIBLE_-

COLLECTIONS_PATH environment variable, or setting collections_path in an ansible.cfg
file alongside your playbook.

There are some cases when I like to install collections into a path local to my
playbook (e.g. by setting collections_path = ./collections), because if you install
collections to one of the more global locations, and you use the same collection with
more than one project, you may run into issues if a newer version of a collection
changes a behavior another playbook relies on.

One important note about the path, though: All collections in Ansible must be stored
in a path that includes folders named after the collection namespace and name inside
an ansible_collections subdirectory.

That’s why earlier in this chapter, when we created the local.colors collection, we
ultimately created it inside the directory:

./collections/ansible_collections/local/colors

Similarly, if you install collections usingGalaxy orAutomationHubwith collections_-
path set to ./collections, then theywill end up inside the ./collections/ansible_-
collections directory as well, inside a namespaced directory.

Ansible 2.9 and earlier used the configuration setting collections_paths

(note the plural s). Ansible 2.10 and later uses the singular collections_-
path for consistency with other path-related settings.

Ansible automatically loads playbook-local collections from the path
collections/, just like it loads local roles from roles/, test plugins from
test_plugins/, etc. But I like to explicitly configure collections_paths so
any collections I install from Ansible Galaxy or Automation Hub are also
installed in the playbook’s directory.

Chapter 7 - Ansible Plugins and Content Collections 162

Summary

Ansible Collections allow for easier distribution of Ansible content—plugins, mod-
ules, and roles—and have also helped to make Ansible’s own maintenance more
evenly distributed.

You may find yourself using bare roles sometimes, and collections (with or without
roles) other times. In either case, Ansible makes consolidating and sharing custom
Ansible functionality easy!

/ Clarity is better than cleverness. \

\ (Eric S. Raymond) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 8 - Inventories
Earlier in the book, a basic inventory file example was given (see Chapter 1’s basic
inventory file example). For the simplest of purposes, a basic hosts.ini inventory
file will suffice to describe to Ansible how to reach the servers you want to manage.

Later, a slightly more involved inventory file was introduced (see Chapter 3’s
inventory file for multiple servers), which allowed us to tell Ansible about multiple
servers, and even group them into role-related groups, so we could run certain
playbooks against certain groups.

Let’s jump back to a basic inventory file example and build from there:

1 # Inventory file hosts.ini

2

3 # Groups are defined using square brackets (e.g. [groupname]).

4 # Each server in the group is defined on its own line.

5 [myapp]

6 www.myapp.com

If you want to run an ansible playbook on all the myapp servers in this inventory (so
far, just one, www.myapp.com), you can set up the playbook like so:

- hosts: myapp

tasks:

[...]

If you want to run an ad-hoc command against all the myapp servers in the inventory,
you can run a command like so:

Chapter 8 - Inventories 164

Use ansible to check memory usage on all the myapp servers.

$ ansible -i hosts.ini myapp -a "free -m"

A real-world web application server inventory

The example above might be adequate for single-server services and tiny apps or
websites, but most real-world applications require many more servers, and usually
separate servers per application concern (database, caching, application, queuing,
etc.). Let’s take a look at a real-world inventory file I used for a small web application
that monitored server uptime, Server Check.in⁸⁷.

1 # Individual Server Check.in servers.

2 [servercheck-web]

3 www1.servercheck.in

4 www2.servercheck.in

5

6 [servercheck-web:vars]

7 ansible_user=servercheck_svc

8

9 [servercheck-db]

10 db1.servercheck.in

11

12 [servercheck-log]

13 log.servercheck.in

14

15 [servercheck-backup]

16 backup.servercheck.in

17

18 [servercheck-nodejs]

19 atl1.servercheck.in

20 atl2.servercheck.in

21 nyc1.servercheck.in

22 nyc2.servercheck.in

⁸⁷https://servercheck.in/

https://servercheck.in/
https://servercheck.in/

Chapter 8 - Inventories 165

23 nyc3.servercheck.in

24 ned1.servercheck.in

25 ned2.servercheck.in

26

27 [servercheck-nodejs:vars]

28 ansible_user=servercheck_svc

29 foo=bar

30

31 # Server Check.in distribution-based groups.

32 [centos:children]

33 servercheck-web

34 servercheck-db

35 servercheck-nodejs

36 servercheck-backup

37

38 [ubuntu:children]

39 servercheck-log

This inventory may look a little overwhelming at first, but if you break it apart into
simple groupings (web app servers, database servers, logging server, and node.js app
servers), it describes a straightforward architecture.

Chapter 8 - Inventories 166

Server Check.in Infrastructure.

Lines 1-29 describe a few groups of servers (some with only one server), so
playbooks and ansible commands can refer to the group by name. Lines 6-7
and 27-29 set variables that will apply only to the servers in the group (e.g.
variables below [servercheck-nodejs:vars] will only apply to the servers in the
servercheck-nodejs group).

Lines 31-39 describe groups of groups (using groupname:children to describe ‘child’
groups) that allow for some helpful abstractions.

Describing infrastructure in such away affords a lot of flexibility when using Ansible.
Consider the task of patching a vulnerability on all your CentOS servers; instead of
having to log into each of the servers, or even having to run an ansible command
against all the groups, using the above structure allows you to easily run an ansible

Chapter 8 - Inventories 167

command or playbook against all centos servers.

As an example, when the Shellshock⁸⁸ vulnerability was disclosed in 2014, patched
bash packages were released for all the major distributions within hours. To update
all the Server Check.in servers, all that was needed was:

$ ansible centos -m dnf -a "name=bash state=latest"

You could even go further and create a small playbook that would patch the
vulnerability, then run tests to make sure the vulnerability was no longer present,
as illustrated in this playbook⁸⁹. This would also allow you to run the playbook in
check mode or run it through a continuous integration system to verify the fix works
in a non-prod environment.

This infrastructure inventory is also nice in that you could create a top-level playbook
that runs certain roles or tasks against all your infrastructure, others against all
servers of a certain Linux flavor, and another against all servers in your entire
infrastructure.

Consider, for example, this example master playbook to completely configure all the
servers:

1 ---

2 # Set up basic, standardized components across all servers.

3 - hosts: all

4 become: yes

5 roles:

6 - security

7 - logging

8 - firewall

9

10 # Configure web application servers.

11 - hosts: servercheck-web

12 roles:

13 - nginx

⁸⁸https://en.wikipedia.org/wiki/Shellshock_(software_bug)
⁸⁹https://raymii.org/s/articles/Patch_CVE-2014-6271_Shellshock_with_Ansible.html

https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://raymii.org/s/articles/Patch_CVE-2014-6271_Shellshock_with_Ansible.html
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://raymii.org/s/articles/Patch_CVE-2014-6271_Shellshock_with_Ansible.html

Chapter 8 - Inventories 168

14 - php

15 - servercheck-web

16

17 # Configure database servers.

18 - hosts: servercheck-db

19 roles:

20 - pgsql

21 - db-tuning

22

23 # Configure logging server.

24 - hosts: servercheck-log

25 roles:

26 - java

27 - elasticsearch

28 - logstash

29 - kibana

30

31 # Configure backup server.

32 - hosts: servercheck-backup

33 roles:

34 - backup

35

36 # Configure Node.js application servers.

37 - hosts: servercheck-nodejs

38 roles:

39 - servercheck-node

There are a number of different ways you can structure your infrastructure-manage-
ment playbooks and roles, and we’ll explore some in later chapters, but for a simple
infrastructure, something like this is adequate and maintainable.

Non-prod environments, separate inventory files

Using the above playbook and a basic inventory file is great for your production
infrastructure, but what happens when you want to configure a separate but similar
infrastructure for, say a development or user certification environment?

Chapter 8 - Inventories 169

In this case, it’s easiest to use separate inventory files. For typical team-managed
infrastructure, I would recommend including an inventory file for each environment
in the same version-controlled repository as your Ansible playbooks, perhaps within
an ‘inventories’ directory.

For example, I would store the contents of the inventory file inside an inventory file
named inventory-prod, then duplicate it, changing server names where appropriate
(e.g. the [servercheck-web] group would only have www-dev1.servercheck.in for
the development environment), and naming the files for the environments:

servercheck/

inventories/

inventory-prod

inventory-cert

inventory-dev

playbook.yml

Now, when running playbook.yml to configure the development infrastructure, I
would pass in the path to the dev inventory (assuming my current working directory
is servercheck/):

$ ansible-playbook playbook.yml -i inventories/inventory-dev

Using inventory variables (which will be explored further), and well-constructed
roles and/or tasks that use the variables effectively, you could architect your entire
infrastructure, with environment-specific configurations, by changing some things
in your inventory files.

Inventory variables

Chapter 5 introduced basic methods of managing variables for individual hosts or
groups of hosts through your inventory in the inventory variables section, but it’s
worth exploring the different ways of defining and overriding variables through
inventory here.

Chapter 8 - Inventories 170

For extremely simple use cases—usually when you need to define one or two
connection-related variables (like ansible_user or ansible_ssh_port)—you can
place variables directly inside an inventory file.

Assuming we have a standalone inventory file for a basic web application, here are
some examples of variable definition inside the file:

1 [www]

2 # You can define host-specific variables inline with the host.

3 www1.example.com ansible_user=johndoe

4 www2.example.com

5

6 [db]

7 db1.example.com

8 db2.example.com

9

10 # You can add a '[group:vars]' heading to create variables that

11 # will apply to an entire inventory group.

12 [db:vars]

13 ansible_ssh_port=5222

14 database_performance_mode=true

It’s usually better to avoid throwing too many variables inside static inventory files,
because not only are these variables typically less visible, they are also mixed in with
your architecture definition. Especially for host-specific vars (which appear on one
long line per host), this is an unmaintainable, low-visibility approach to host and
group-specific variables.

Fortunately, Ansible provides a more flexible way of declaring host and group
variables.

host_vars

For Hosted Apache Solr⁹⁰, different servers in a solr group have different memory
requirements. The simplest way to tell Ansible to override a default variable in

⁹⁰https://hostedapachesolr.com/

https://hostedapachesolr.com/
https://hostedapachesolr.com/

Chapter 8 - Inventories 171

our Ansible playbook (in this case, the tomcat_xmx variable) is to use a host_vars

directory (which can be placed either in the same location as your inventory file, or
in a playbook’s root directory), and place a YAML file named after the host which
needs the overridden variable.

As an illustration of the use of host_vars, we’ll assume we have the following
directory layout:

hostedapachesolr/

host_vars/

nyc1.hostedapachesolr.com

inventory/

hosts

main.yml

The inventory/hosts file contains a simple definition of all the servers by group:

1 [solr]

2 nyc1.hostedapachesolr.com

3 nyc2.hostedapachesolr.com

4 jap1.hostedapachesolr.com

5 ...

6

7 [log]

8 log.hostedapachesolr.com

Ansible will search for a file at either:

hostedapachesolr/host_vars/nyc1.hostedapachesolr.com

Or:

hostedapachesolr/inventory/host_vars/nyc1.hostedapachesolr.com

If there are any variables defined in the file (in YAML format), those variables will
override all other playbook and role variables and gathered facts, only for the single
host.

The nyc1.hostedapachesolr.com host_vars file looks like:

Chapter 8 - Inventories 172

1 ---

2 tomcat_xmx: "4096m"

The default for tomcat_xmx may normally be 2048m, but when Ansible runs a
playbook against nyc1.hostedapachesolr.com, the value of tomcat_xmx will be 4096m
instead.

Overriding host variables with host_vars is much more maintainable than doing so
directly in static inventory files, and also provides greater visibility into what hosts
are getting what overrides.

group_vars

Much like host_vars, Ansible will automatically load any files named after inventory
groups in a group_vars directory placed inside the playbook or inventory file’s
location.

Using the same example as above, we’ll override one particular variable for an entire
group of servers. First, we add a group_vars directory with a file named after the
group needing the overridden variable:

hostedapachesolr/

group_vars/

solr

host_vars/

nyc1.hostedapachesolr.com

inventory/

hosts

main.yml

Then, inside group_vars/solr, use YAML to define a list of variables that will be
applied to servers in the solr group:

Chapter 8 - Inventories 173

1 ---

2 do_something_amazing: true

3 foo: bar

Typically, if your playbook is only being run on one group of hosts, it’s easier to define
the variables in the playbook via an included vars file. However, in many cases you
will be running a playbook or applying a set of roles to multiple inventory groups. In
these situations, you may need to use group_vars to override specific variables for
one or more groups of servers.

Ephemeral infrastructure: Dynamic inventory

In many circumstances, static inventories are adequate for describing your infras-
tructure. When working on small applications, low-traffic web applications, and
individual workstations, it’s simple enough to manage an inventory file by hand.

However, in the age of cloud computing and highly scalable application architecture,
it’s often necessary to add dozens or hundreds of servers to an infrastructure in a
short period of time—or to add and remove servers continuously, to scale as traffic
grows and subsides. In this circumstance, it would be tedious (if not impossible)
to manage a single inventory file by hand, especially if you’re using auto-scaling
infrastructure new instances are provisioned and need to be configured in minutes
or seconds.

Even in the case of container-based infrastructure, new instances need to be config-
ured correctly, with the proper port mappings, application settings, and filesystem
configuration.

For these situations, Ansible allows you to define inventory dynamically. If you’re
using one of the larger cloud-based hosting providers, chances are there is already
a dynamic inventory script (which Ansible uses to build an inventory) for you
to use. Ansible core already includes scripts for Amazon Web Services, Cobbler,
DigitalOcean, Linode, OpenStack, and other large providers, and later we’ll explore
creating our own dynamic inventory script (if you aren’t using one of the major
hosting providers or cloud management platforms).

Chapter 8 - Inventories 174

Dynamic inventory with DigitalOcean

DigitalOcean is one of the world’s top five hosting companies, and has grown rapidly
since its founding in 2011. One of the reasons for the extremely rapid growth is the
ease of provisioning new ‘droplets’ (cloud VPS servers), and the value provided; as
of this writing, you could get a fairly speedy VPS with 1GB of RAM and a generous
portion of fast SSD storage for $5 USD per month.

DigitalOcean’s API and developer-friendly philosophy has made it easy for Ansible
to interact with DigitalOcean droplets; you can create, manage, and delete droplets
with Ansible, as well as use droplets with your playbooks using dynamic inventory.

DigitalOcean account prerequisites

Before you can follow the rest of the examples in this section, you will need:

1. A DigitalOcean account (sign up at www.digitalocean.com).
2. A DigitalOcean API Personal Access Token. Follow this guide⁹¹ to generate a

Personal Access Token for use with Ansible (grant Read andWrite access when
you create the token).

3. An SSH key pair, which will be used to connect to your DigitalOcean servers.
Follow this guide⁹² to create a key pair and add the public key to your
DigitalOcean account.

Once you have these three things set up and ready to go, you should be able to
communicate with your DigitalOcean account through Ansible.

Connecting to your DigitalOcean account

There are a few different ways you can specify your DigitalOcean Personal Access
Token (including passing it via api_token to each DigitalOcean-related task, or
exporting it in your local environment as DO_API_TOKEN or DO_API_KEY). For our
example, we’ll use environment variables (since these are easy to configure, and
work both with Ansible’s digital_ocean module and the dynamic inventory script).
Open up a terminal session, and enter the following command:

⁹¹https://www.digitalocean.com/community/tutorials/how-to-use-the-digitalocean-api-v2
⁹²https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets

https://www.digitalocean.com/community/tutorials/how-to-use-the-digitalocean-api-v2
https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets
https://www.digitalocean.com/community/tutorials/how-to-use-the-digitalocean-api-v2
https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets

Chapter 8 - Inventories 175

$ export DO_API_TOKEN=YOUR_API_TOKEN_HERE

Before we can use a dynamic inventory script to discover our DigitalOcean droplets,
let’s use Ansible to provision a new droplet.

Creating cloud instances (‘Droplets’, in DigitalOcean parlance) will incur
minimal charges for the time you use them (currently less than $0.01/hour
for the size in this example). For the purposes of this tutorial (and in general,
for any testing), make sure you shut down and destroy your instances when
you’re finished using them, or you will be charged through the next billing
cycle! Even so, using low-priced instances (like a $5/month DigitalOcean
droplet with hourly billing) means that, even in the worst case, you won’t
have to pay much. If you create and destroy an instance in a few hours,
you’ll be charged a few pennies.

Creating a droplet with Ansible

Create a new playbook named provision.yml, with the following contents:

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: False

5

6 tasks:

7 - name: Create new Droplet.

8 digital_ocean_droplet:

9 state: present

10 name: ansible-test

11 private_networking: yes

12 size: 1gb

13 image_id: centos-7-x64

14 region: nyc3

15 # Customize this for your account.

16 ssh_keys:

Chapter 8 - Inventories 176

17 - 138954

18 # Required for idempotence/only one droplet creation.

19 unique_name: yes

20 register: do

The digital_ocean module lets you create, manage, and delete droplets with ease.
You can read the documentation for all the options, but the above is an overview of
the main options. name sets the hostname for the droplet, state can also be set to
deleted if you want the droplet to be destroyed, and other options tell DigitalOcean
where to set up the droplet, and with what OS and configuration.

You can use DigitalOcean’s API, along with your Personal Access Token,
to get the IDs for size_id (the size of the Droplet), image_id (the system
or distro image to use), region_id (the data center in which your droplet
will be created), and ssh_key_ids (a comma separate list of SSH keys to be
included in the root account’s authorized_keys file).

As an example, to get all the available images, use curl --silent

"https://api.digitalocean.com/v2/images?per_page=999" -H

"Authorization: Bearer $DO_API_TOKEN" | python -m json.tool,
and you’ll receive a JSON listing of all available values. Browse the
DigitalOcean API⁹³ for information on how to query SSH key information,
size information, etc.

We used register as part of the digital_ocean task so we could immediately start
using and configuring the new host if needed. If you want to see what the output of
the do variable contains, add the following debug task:

22 - debug: var=do

Then run the playbook:

⁹³https://developers.digitalocean.com/

https://developers.digitalocean.com/
https://developers.digitalocean.com/

Chapter 8 - Inventories 177

$ ansible-playbook provision.yml

PLAY [localhost] ***

TASK [Create new Droplet.] *************************************

changed: [localhost]

TASK [debug] ***

ok: [127.0.0.1] => {

"do": {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python"

},

"changed": false,

"data": {

"droplet": {

"backup_ids": [],

"created_at": "2024-07-26T22:35:30Z",

"disk": 30,

"features": [

"private_networking"

],

"id": 201562655,

"image": {

"created_at": "2019-08-14T17:00:31Z",

"description": "7.6 x64",

"distribution": "CentOS",

"id": 50903182,

"min_disk_size": 20,

"name": "7.6 x64",

"public": true,

"regions": [

"nyc3",

...

],

"size_gigabytes": 0.43,

Chapter 8 - Inventories 178

"slug": "centos-7-x64",

"status": "available",

"tags": [],

"type": "base"

},

"kernel": null,

"locked": false,

"memory": 1024,

"name": "ansible-test",

"networks": {

"v4": [

{

"gateway": "<nil>",

"ip_address": "10.132.75.250",

"netmask": "255.255.0.0",

"type": "private"

},

{

"gateway": "167.71.96.1",

"ip_address": "167.71.109.155",

"netmask": "255.255.240.0",

"type": "public"

}

],

"v6": []

},

"next_backup_window": null,

"region": {

"available": true,

"features": [

"private_networking",

"backups",

"ipv6",

"metadata",

"install_agent",

"storage",

Chapter 8 - Inventories 179

"image_transfer"

],

"name": "New York 3",

"sizes": [

"s-1vcpu-1gb",

...

],

"slug": "nyc3"

},

"size": {

"available": true,

"disk": 30,

"memory": 1024,

"price_hourly": 0.01488,

"price_monthly": 10.0,

"regions": [

"ams2",

...

],

"slug": "1gb",

"transfer": 2.0,

"vcpus": 1

},

"size_slug": "1gb",

"snapshot_ids": [],

"status": "active",

"tags": [],

"vcpus": 1,

"volume_ids": [],

"vpc_uuid": "9545131e-dc84-11e8-80bc-3cfdfea9fba1"

},

"ip_address": "167.71.109.155",

"private_ipv4_address": "10.132.75.250"

},

"failed": false

}

Chapter 8 - Inventories 180

}

PLAY RECAP ***

localhost : ok=2 changed=1 unreachable=0 failed=0

You can remove the debug task now that you know the structure of the returned do

object.

Since do contains the new droplet’s IP address (alongside other relevant information),
you can place your freshly-created droplet in an existing inventory group using
Ansible’s add_host module. Adding to the playbook we started above, you could
set up your playbook to provision an instance and immediately configure it (after
waiting for port 22 to become available) with something like:

21 - name: Add new host to our inventory.

22 add_host:

23 name: "{{ do.data.ip_address }}"

24 groups: do

25 ansible_ssh_extra_args: '-o StrictHostKeyChecking=no'

26 when: do.data is defined

27 changed_when: False

28

29 - hosts: do

30 remote_user: root

31 gather_facts: False

32

33 tasks:

34 - name: Wait for hosts to become reachable.

35 wait_for_connection:

36

37 - name: Install tcpdump.

38 dnf: name=tcpdump state=present

At this point, if you run the playbook ($ ansible-playbook provision.yml), it should
create a new droplet (if it has not already been created), then add that droplet to the
do inventory group, and finally, run a new play on all the do hosts (including the new
droplet). Here are the results:

Chapter 8 - Inventories 181

$ ansible-playbook provision.yml

PLAY [localhost] ***

TASK: [Create new Droplet.] ************************************

changed: [localhost]

TASK: [Add new host to our inventory.] *************************

ok: [localhost]

PLAY [do] **

TASK [Wait for hosts to become available.] *******************

ok: [162.243.20.29]

TASK: [Install tcpdump.] ***************************************

changed: [162.243.20.29]

PLAY RECAP ***

162.243.20.29 : ok=2 changed=1 unreachable=0 failed=0

localhost : ok=2 changed=1 unreachable=0 failed=0

If you run the same playbook again, it should report no changes—the entire playbook
is idempotent! You might be starting to see just how powerful it is to have a tool as
flexible as Ansible at your disposal; not only can you configure servers, you can
create them (singly, or dozens at a time), and configure them at once. And even if a
ham-fisted sysadmin jumps in and deletes an entire server, you can run the playbook
again, and rest assured your server will be recreated and reconfigured exactly as it
was when it was first set up.

We added the StrictHostKeyChecking=no option to the Ansible’s SSH
arguments for the droplet to avoid getting an interactive prompt to accept
the server’s host key during the playbook run.

Typically, you should leave host_key_checking enabled, but when rapidly
building and destroying VMs for testing purposes, it’s more convenient to
turn off host key verification.

Chapter 8 - Inventories 182

DigitalOcean dynamic inventory with digital_ocean.py

Once you have some DigitalOcean droplets, you need a way for Ansible to dynam-
ically build an inventory of your servers so you can build playbooks and use the
servers in logical groupings (or run playbooks and ansible commands directly on
all droplets).

There are a few steps to getting DigitalOcean’s official dynamic inventory script
working:

1. Download the DigitalOcean dynamic inventory script⁹⁴ from GitHub:

$ curl -O https://raw.githubusercontent.com/ansible-collections/communi\

ty.digitalocean/main/scripts/inventory/digital_ocean.py

2. Make the inventory script executable:

$ chmod +x digital_ocean.py

3. Make sure you have DO_API_TOKEN set in your environment.
4. Make sure the script is working by running the script directly (with the

command below). After a second or two, you should see all your droplets (likely
just the one you created earlier) listed by IP address and dynamic group as
JSON.

$./digital_ocean.py --pretty

5. Ping all your DigitalOcean droplets:

$ ansible all -m ping -i digital_ocean.py -u root

Now that you have all your hosts being loaded through the dynamic inventory script,
you can use add_hosts to build groups of the Droplets for use in your playbooks.
You can also configure a digital_ocean.ini file (see an example⁹⁵ on GitHub) to
customize the inventory data further.

⁹⁴https://github.com/ansible-collections/community.digitalocean/blob/main/scripts/inventory/digital_ocean.py
⁹⁵https://github.com/ansible-collections/community.digitalocean/blob/main/scripts/inventory/digital_ocean.ini

https://github.com/ansible-collections/community.digitalocean/blob/main/scripts/inventory/digital_ocean.py
https://github.com/ansible-collections/community.digitalocean/blob/main/scripts/inventory/digital_ocean.ini
https://github.com/ansible-collections/community.digitalocean/blob/main/scripts/inventory/digital_ocean.py
https://github.com/ansible-collections/community.digitalocean/blob/main/scripts/inventory/digital_ocean.ini

Chapter 8 - Inventories 183

The community.digitalocean collection⁹⁶ on Ansible Galaxy will soon
include an inventory plugin for DigitalOcean, which will make dynamic
inventory with DigitalOcean even easier.

To delete the DigitalOcean droplet you created earlier, update the state parameter
for the Create new Droplet task. Set it to absent, then run the playbook again, and
the droplet will be deleted from your account.

Dynamic inventory with AWS

Many of this book’s readers are familiar with Amazon Web Services (especially
EC2, S3, RDS, and Route53), and likely have managed or currently manage an
infrastructure within Amazon’s cloud. Ansible has very strong support for managing
AWS-based infrastructure, and includes a EC2 inventory plugin⁹⁷ to help you run
playbooks on your hosts in a variety of ways.

Ansible’s own documentation includes a thorough Amazon Web Services Guide⁹⁸ if
you’d like to automate your AWS workflows with Ansible.

I won’t be covering AWS dynamic inventory in this chapter, but will mention
that the aws_ec2 inventory plugin, along with Ansible’s extensive support for
AWS infrastructure through ec2_* modules, makes Ansible an excellent choice for
managing AWS infrastructure.

In the next chapter, one of the examples will include a guide for provisioning
infrastructure on AWS, along with a quick overview of dynamic inventory on AWS.

Inventory on-the-fly: add_host and group_by

Sometimes, especially when provisioning new servers, youwill need tomodify the in-
memory inventory during the course of a playbook run. Ansible offers the add_host
and group_by modules to help you manage inventory for these scenarios.

In the DigitalOcean example above, add_hostwas used to add the new droplet to the
do group:

⁹⁶https://github.com/ansible-collections/community.digitalocean
⁹⁷https://docs.ansible.com/ansible/latest/plugins/inventory/aws_ec2.html
⁹⁸https://docs.ansible.com/ansible/latest/scenario_guides/guide_aws.html

https://github.com/ansible-collections/community.digitalocean
https://docs.ansible.com/ansible/latest/plugins/inventory/aws_ec2.html
https://docs.ansible.com/ansible/latest/scenario_guides/guide_aws.html
https://github.com/ansible-collections/community.digitalocean
https://docs.ansible.com/ansible/latest/plugins/inventory/aws_ec2.html
https://docs.ansible.com/ansible/latest/scenario_guides/guide_aws.html

Chapter 8 - Inventories 184

[...]

- name: Add new host to our inventory.

add_host:

name: "{{ do.droplet.ip_address }}"

groups: do

when: do.droplet is defined

- hosts: do

remote_user: root

tasks:

[...]

You could add multiple groups with add_host, and you can also add other variables
for the host inline with add_host. As an example, let’s say you created a VM using
an image that exposes SSH on port 2288 and requires an application-specific memory
limit specific to this VM:

- name: Add new host to our inventory.

add_host:

name: "{{ do.droplet.ip_address }}"

ansible_ssh_port: 2288

myapp_memory_maximum: "1G"

when: do.droplet is defined

The custom port will be used when Ansible connects to this host, and the myapp_-

memory_maximum will be passed into the playbooks just as any other inventory
variable.

The group_by module is even simpler, and allows you to create dynamic groups
during the course of a playbook run. Usage is extremely simple:

Chapter 8 - Inventories 185

- hosts: all

gather_facts: yes

tasks:

- name: Create an inventory group for each architecture.

group_by:

key: "architecture-{{ ansible_machine }}"

- debug: var=groups

After running the above playbook, you’d see all your normal inventory groups,
plus groups for architecture-x86_64, i386, etc. (depending on what kind of server
architectures you use).

Multiple inventory sources - mixing static and dynamic
inventories

If you need to combine static and dynamic inventory, or even if you wish to use mul-
tiple dynamic inventories (for example, if you are managing servers hosted by two
different cloud providers), you can pass a directory to ansible or ansible-playbook,
and Ansible will combine the output of all the inventories (both static and dynamic)
inside the directory:

ansible-playbook -i path/to/inventories main.yml

One caveat: Ansible ignores .ini and backup files in the directory, but will attempt
to parse every text file and execute every executable file in the directory—don’t leave
random files in mixed inventory folders!

Creating custom dynamic inventories

Most infrastructure can be managed with a custom inventory file or an off-the-shelf
cloud inventory script, but there are many situations where more control is needed.
Ansible will accept any kind of executable file as an inventory file, so you can build
your own dynamic inventory however you like, as long as you can pass it to Ansible
as JSON.

Chapter 8 - Inventories 186

You could create an executable binary, a script, or anything else that can be run and
will output JSON to stdout, and Ansible will call it with the argument --list when
you run, as an example, ansible all -i my-inventory-script -m ping.

Let’s start working our own custom dynamic inventory script by outlining the basic
JSON format Ansible expects:

1 {

2 "group": {

3 "hosts": [

4 "192.168.56.71",

5 "192.168.56.72"

6],

7 "vars": {

8 "ansible_user": "johndoe",

9 "ansible_ssh_private_key_file": "~/.ssh/mykey",

10 "example_variable": "value"

11 }

12 },

13 "_meta": {

14 "hostvars": {

15 "192.168.56.71": {

16 "host_specific_var": "bar"

17 },

18 "192.168.56.72": {

19 "host_specific_var": "foo"

20 }

21 }

22 }

23 }

Ansible expects a dictionary of groups (with each group having a list of hosts, and
group variables in the group’s vars dictionary), and a _meta dictionary that stores
host variables for all hosts individually inside a hostvars dictionary.

Chapter 8 - Inventories 187

When you return a _meta dictionary in your inventory script, Ansible stores
that data in its cache and doesn’t call your inventory script N times for all
the hosts in the inventory. You can leave out the _meta variables if you’d
rather structure your inventory file to return host variables one host at a
time (Ansible will call your script with the arguments --host [hostname]

for each host), but it’s often faster and easier to simply return all variables
in the first call. In this book, all the examples will use the _meta dictionary.

The dynamic inventory script can do anything to get the data (call an external API,
pull information from a database or file, etc.), and Ansible will use it as an inventory
source, so long as it returns a JSON structure like the one above when the script is
called with the --list.

Building a Custom Dynamic Inventory in Python

To create a test dynamic inventory script for demonstration purposes, let’s set up
a quick set of two VMs using Vagrant. Create the following Vagrantfile in a new
directory:

1 VAGRANTFILE_API_VERSION = "2"

2

3 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

4 config.ssh.insert_key = false

5 config.vm.provider :virtualbox do |v|

6 v.memory = 512

7 v.linked_clone = true

8 end

9

10 # Application server 1.

11 config.vm.define "inventory1" do |inventory|

12 inventory.vm.hostname = "inventory1.test"

13 inventory.vm.box = "geerlingguy/ubuntu2004"

14 inventory.vm.network :private_network, ip: "192.168.56.71"

15 end

16

17 # Application server 2.

Chapter 8 - Inventories 188

18 config.vm.define "inventory2" do |inventory|

19 inventory.vm.hostname = "inventory2.test"

20 inventory.vm.box = "geerlingguy/ubuntu2004"

21 inventory.vm.network :private_network, ip: "192.168.56.72"

22 end

23 end

Run vagrant up to boot twoVMs runningUbuntu, with the IP addresses 192.168.56.71,
and 192.168.56.72. A simple inventory file could be used to control the VMs with
Ansible:

1 [group]

2 192.168.56.71 host_specific_var=foo

3 192.168.56.72 host_specific_var=bar

4

5 [group:vars]

6 ansible_user=vagrant

7 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

8 example_variable=value

However, let’s assume the VMs were provisioned by another system, and you
need to get the information through a dynamic inventory script. Here’s a simple
implementation of a dynamic inventory script in Python:

1 #!/usr/bin/env python3

2

3 '''

4 Example custom dynamic inventory script for Ansible, in Python.

5 '''

6

7 import os

8 import sys

9 import argparse

10 import json

11

Chapter 8 - Inventories 189

12 class ExampleInventory(object):

13

14 def __init__(self):

15 self.inventory = {}

16 self.read_cli_args()

17

18 # Called with `--list`.

19 if self.args.list:

20 self.inventory = self.example_inventory()

21 # Called with `--host [hostname]`.

22 elif self.args.host:

23 # Not implemented, since we return _meta info `--list`.

24 self.inventory = self.empty_inventory()

25 # If no groups or vars are present, return empty inventory.

26 else:

27 self.inventory = self.empty_inventory()

28

29 print(json.dumps(self.inventory))

30

31 # Example inventory for testing.

32 def example_inventory(self):

33 return {

34 'group': {

35 'hosts': ['192.168.56.71', '192.168.56.72'],

36 'vars': {

37 'ansible_user': 'vagrant',

38 'ansible_ssh_private_key_file':

39 '~/.vagrant.d/insecure_private_key',

40 'ansible_python_interpreter':

41 '/usr/bin/python3',

42 'example_variable': 'value'

43 }

44 },

45 '_meta': {

46 'hostvars': {

47 '192.168.56.71': {

Chapter 8 - Inventories 190

48 'host_specific_var': 'foo'

49 },

50 '192.168.56.72': {

51 'host_specific_var': 'bar'

52 }

53 }

54 }

55 }

56

57 # Empty inventory for testing.

58 def empty_inventory(self):

59 return {'_meta': {'hostvars': {}}}

60

61 # Read the command line args passed to the script.

62 def read_cli_args(self):

63 parser = argparse.ArgumentParser()

64 parser.add_argument('--list', action = 'store_true')

65 parser.add_argument('--host', action = 'store')

66 self.args = parser.parse_args()

67

68 # Get the inventory.

69 ExampleInventory()

Save the above as inventory.py in the same folder as the Vagrantfile you created
earlier (make sure you booted the two VMs with vagrant up), and make the file
executable chmod +x inventory.py.

Run the inventory script manually to verify it returns the proper JSON responsewhen
run with --list:

Chapter 8 - Inventories 191

$./inventory.py --list

{"group": {"hosts": ["192.168.56.71", "192.168.56.72"], "vars":

{"ansible_user": "vagrant", "ansible_ssh_private_key_file":

"~/.vagrant.d/insecure_private_key", "example_variable": "value

"}}, "_meta": {"hostvars": {"192.168.56.72": {"host_specific_va

r": "bar"}, "192.168.56.71": {"host_specific_var": "foo"}}}}

Test Ansible’s ability to use the inventory script to contact the two VMs:

$ ansible all -i inventory.py -m ping

192.168.56.71 | SUCCESS >> {

"changed": false,

"ping": "pong"

}

192.168.56.72 | SUCCESS >> {

"changed": false,

"ping": "pong"

}

Since Ansible can connect, verify the configured host variables (foo and bar) are set
correctly on their respective hosts:

$ ansible all -i inventory.py -m debug -a "var=host_specific_var"

192.168.56.71 | SUCCESS >> {

"var": {

"host_specific_var": "foo"

}

}

192.168.56.72 | SUCCESS >> {

"var": {

"host_specific_var": "bar"

}

}

Chapter 8 - Inventories 192

The only alteration for real-world usage you’d need tomake to the above inventory.py
script would be changing the example_inventory() method to something that
incorporates the business logic you would need for your own inventory, whether it
would be calling an external API with all the server data or pulling in the information
from a database or other data store.

Building a Custom Dynamic Inventory in PHP

You can build an inventory script in whatever language you’d like. For example, the
Python script from above can be ported to functional PHP as follows:

1 #!/usr/bin/php

2 <?php

3

4 /**

5 * @file

6 * Example custom dynamic inventory script for Ansible, in PHP.

7 */

8

9 /**

10 * Example inventory for testing.

11 *

12 * @return array

13 * An example inventory with two hosts.

14 */

15 function example_inventory() {

16 return [

17 'group' => [

18 'hosts' => ['192.168.56.71', '192.168.56.72'],

19 'vars' => [

20 'ansible_user' => 'vagrant',

21 'ansible_ssh_private_key_file' => '~/.vagrant.d/\

22 insecure_private_key',

23 'ansible_python_interpreter' => '/usr/bin/python3',

24 'example_variable' => 'value',

25],

Chapter 8 - Inventories 193

26],

27 '_meta' => [

28 'hostvars' => [

29 '192.168.56.71' => [

30 'host_specific_var' => 'foo',

31],

32 '192.168.56.72' => [

33 'host_specific_var' => 'bar',

34],

35],

36],

37];

38 }

39

40 /**

41 * Empty inventory for testing.

42 *

43 * @return array

44 * An empty inventory.

45 */

46 function empty_inventory() {

47 return ['_meta' => ['hostvars' => new stdClass()]];

48 }

49

50 /**

51 * Get inventory.

52 *

53 * @param array $argv

54 * Array of command line arguments (as in $_SERVER['argv']).

55 *

56 * @return array

57 * Inventory of groups or vars, depending on arguments.

58 */

59 function get_inventory($argv = []) {

60 $inventory = new stdClass();

61

Chapter 8 - Inventories 194

62 // Called with `--list`.

63 if (!empty($argv[1]) && $argv[1] == '--list') {

64 $inventory = example_inventory();

65 }

66 // Called with `--host [hostname]`.

67 elseif ((!empty($argv[1]) && $argv[1] == '--host') && \

68 !empty($argv[2])) {

69 // Not implemented, since we return _meta info `--list`.

70 $inventory = empty_inventory();

71 }

72 // If no groups or vars are present, return an empty inventory.

73 else {

74 $inventory = empty_inventory();

75 }

76

77 print json_encode($inventory);

78 }

79

80 // Get the inventory.

81 get_inventory($_SERVER['argv']);

82

83 ?>

If you were to save the code above into the file inventory.php, mark it executable
(chmod +x inventory.php), and run the same Ansible command as earlier (referenc-
ing inventory.php instead of inventory.py), the command should succeed, just as
with the previous Python example.

All the files mentioned in these dynamic inventory examples are available
in the Ansible for DevOps GitHub repository⁹⁹, in the dynamic-inventory
folder.

⁹⁹https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 8 - Inventories 195

Managing a PaaS with a Custom Dynamic Inventory

Hosted Apache Solr¹⁰⁰’s infrastructure is built using a custom dynamic inventory to
allow for centrally-controlled server provisioning and configuration. Here’s how the
server provisioning process works on Hosted Apache Solr:

1. A Drupal website holds a ‘Server’ content type that stores metadata about each
server (e.g. chosen hostname, data center location, choice of OS image, and
memory settings).

2. When a new server is added, a remote Jenkins job is triggered, which: 1. Builds
a new cloud server on DigitalOcean using an Ansible playbook. 2. Runs a
provisioning playbook on the server to initialize the configuration. 3. Adds a
new DNS entry for the server. 4. Posts additional server metadata (like the IP
address) back to the Drupal website via a private API.

3. When a server is updated, or there is new configuration to be deployed to
the server(s), a different Jenkins job is triggered, which: 1. Runs the same
provisioning playbook on all the DigitalOcean servers. This playbook uses an
inventory script which calls back to an inventory API endpoint that returns
all the server information as JSON (the inventory script on the Jenkins server
passes the JSON through to stdout). 2. Reports back success or failure of the
ansible playbook to the REST API.

The above process transformed the management of the entire Hosted Apache Solr
platform. Instead of taking twenty to thirty minutes to build a new server (even when
using an Ansible playbook with a few manual steps), the process can be completed
in just a few minutes, with no manual intervention.

The security of your server inventory and infrastructure management
should be a top priority; Hosted Apache Solr uses HTTPS everywhere, and
has a hardened private API for inventory access and server metadata. If
you have any automated processes that run over a network, you should take
extra care to audit these processes and all the involved systems thoroughly!

¹⁰⁰https://hostedapachesolr.com/

https://hostedapachesolr.com/
https://hostedapachesolr.com/

Chapter 8 - Inventories 196

Summary

From the most basic infrastructure consisting of one server to a multi-tenant,
dynamic infrastructure with thousands of them, Ansible offers many options for
describing your servers and overriding playbook and role variables for specific hosts
or groups. With Ansible’s flexible inventory system, you should be able to describe
all your servers, however they’re managed and wherever they’re hosted.

/ A pint of sweat saves a gallon of \

\ blood. (General Patton) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 9 - Ansible Cookbooks
Until now, most of this book has demonstrated individual aspects of Ansible—
inventory, playbooks, ad-hoc tasks, etc. But this chapter synthesizes everything
we’ve gone over in the previous chapters and shows how Ansible is applied to real-
world infrastructure management scenarios.

Highly-Available Infrastructure with Ansible

Real-world web applications require redundancy and horizontal scalability with
multi-server infrastructure. In the following example, we’ll use Ansible to configure
a complex infrastructure on servers provisioned either locally (via Vagrant and
VirtualBox) or on a set of automatically-provisioned instances (running on either
DigitalOcean or Amazon Web Services):

Chapter 9 - Ansible Cookbooks 198

Highly-Available Infrastructure.

Varnish acts as a load balancer and reverse proxy, fronting web requests and routing
them to the application servers. We could just as easily use something like Nginx or
HAProxy, or even a proprietary cloud-based solution like an Amazon’s Elastic Load
Balancer or Linode’s NodeBalancer, but for simplicity’s sake and for flexibility in
deployment, we’ll use Varnish.

Apache and mod_php run a PHP-based application that displays the entire stack’s
current status and outputs the current server’s IP address for load balancing verifi-
cation.

AMemcached server provides a caching layer that can be used to store and retrieve
frequently-accessed objects in lieu of slower database storage.

Two MySQL servers, configured as a master and slave, offer redundant and perfor-
mant database access; all data will be replicated from the master to the slave, and in

Chapter 9 - Ansible Cookbooks 199

addition, the slave can be used as a secondary server for read-only queries to take
some load off the master.

Directory Structure

In order to keep our configuration organized, we’ll use the following structure for
our playbooks and configuration:

lamp-infrastructure/

inventories/

playbooks/

db/

memcached/

varnish/

www/

provisioners/

configure.yml

provision.yml

requirements.yml

Vagrantfile

Organizing things this way allows us to focus on each server configuration individ-
ually, then build playbooks for provisioning and configuring instances on different
hosting providers later. This organization also keeps server playbooks completely
independent, so we can modularize and reuse individual server configurations.

Individual Server Playbooks

Let’s start building our individual server playbooks (in the playbooks directory).
To make our playbooks more efficient, we’ll use some contributed Ansible roles
on Ansible Galaxy rather than install and configure everything step-by-step. We’re
going to target CentOS 7 servers in these playbooks, but only minimal changes would
be required to use the playbooks with Ubuntu, Debian, or later versions of CentOS.

Varnish

Create a main.yml file within the playbooks/varnish directory, with the following
contents:

Chapter 9 - Ansible Cookbooks 200

1 ---

2 - hosts: lamp_varnish

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.firewall

10 - geerlingguy.repo-epel

11 - geerlingguy.varnish

12

13 tasks:

14 - name: Copy Varnish default.vcl.

15 template:

16 src: "templates/default.vcl.j2"

17 dest: "/etc/varnish/default.vcl"

18 notify: restart varnish

We’re going to run this playbook on all hosts in the lamp_varnish inventory group
(we’ll create this later), and we’ll run a few simple roles to configure the server:

• geerlingguy.firewall configures a simple iptables-based firewall using a
couple variables defined in vars.yml.

• geerlingguy.repo-epel adds the EPEL repository (a prerequisite for varnish).
• geerlingguy.varnish installs and configures Varnish.

Finally, a task copies over a custom default.vcl that configures Varnish, telling it
where to find our web servers and how to load balance requests between the servers.

Let’s create the two files referenced in the above playbook. First, vars.yml, in the
same directory as main.yml:

Chapter 9 - Ansible Cookbooks 201

1 ---

2 firewall_allowed_tcp_ports:

3 - "22"

4 - "80"

5

6 varnish_use_default_vcl: false

The first variable tells the geerlingguy.firewall role to open TCP ports 22 and 80 for
incoming traffic. The second variable tells the geerlingguy.varnish we will supply
a custom default.vcl for Varnish configuration.

Create a templates directory inside the playbooks/varnish directory, and inside,
create a default.vcl.j2 file. This file will use Jinja syntax to build Varnish’s custom
default.vcl file:

1 vcl 4.0;

2

3 import directors;

4

5 {% for host in groups['lamp_www'] %}

6 backend www{{ loop.index }} {

7 .host = "{{ host }}";

8 .port = "80";

9 }

10 {% endfor %}

11

12 sub vcl_init {

13 new vdir = directors.random();

14 {% for host in groups['lamp_www'] %}

15 vdir.add_backend(www{{ loop.index }}, 1);

16 {% endfor %}

17 }

18

19 sub vcl_recv {

20 set req.backend_hint = vdir.backend();

21

Chapter 9 - Ansible Cookbooks 202

22 # For testing ONLY; makes sure load balancing is working correctly.

23 return (pass);

24 }

We won’t study Varnish’s VCL syntax in depth but we’ll run through default.vcl

and highlight what is being configured:

1. (1-3) Indicate that we’re using the 4.0 version of the VCL syntax and import the
directors varnish module (which is used to configure load balancing).

2. (5-10) Define each web server as a new backend; give a host and a port through
which varnish can contact each host.

3. (12-17) vcl_init is called when Varnish boots and initializes any required
varnish modules. In this case, we’re configuring a load balancer vdir, and
adding each of the www[#] backends we defined earlier as backends to which
the load balancer will distribute requests. We use a random director so we can
easily demonstrate Varnish’s ability to distribute requests to both app backends,
but other load balancing strategies are also available.

4. (19-24) vcl_recv is called for each request, and routes the request through
Varnish. In this case, we route the request to the vdir backend defined in
vcl_init, and indicate that Varnish should not cache the result.

According to #4, we’re actually bypassing Varnish’s caching layer, which is not
helpful in a typical production environment. If you only need a load balancer without
any reverse proxy or caching capabilities, there are better options. However, we need
to verify our infrastructure is working as it should. If we used Varnish’s caching,
Varnish would only ever hit one of our two web servers during normal testing.

In terms of our caching/load balancing layer, this should suffice. For a true pro-
duction environment, you should remove the final return (pass) and customize
default.vcl according to your application’s needs.

Apache / PHP

Create a main.yml file within the playbooks/www directory, with the following
contents:

Chapter 9 - Ansible Cookbooks 203

1 ---

2 - hosts: lamp_www

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.firewall

10 - geerlingguy.repo-epel

11 - geerlingguy.apache

12 - geerlingguy.php

13 - geerlingguy.php-mysql

14 - geerlingguy.php-memcached

15

16 tasks:

17 - name: Remove the Apache test page.

18 file:

19 path: /var/www/html/index.html

20 state: absent

21

22 - name: Copy our fancy server-specific home page.

23 template:

24 src: templates/index.php.j2

25 dest: /var/www/html/index.php

26

27 - name: Ensure required SELinux dependency is installed.

28 package:

29 name: libsemanage-python

30 state: present

31

32 - name: Configure SELinux to allow HTTPD connections.

33 seboolean:

34 name: "{{ item }}"

35 state: true

36 persistent: true

Chapter 9 - Ansible Cookbooks 204

37 with_items:

38 - httpd_can_network_connect_db

39 - httpd_can_network_memcache

40 when: ansible_selinux.status == 'enabled'

As with Varnish’s configuration, we’ll configure a firewall and add the EPEL
repository (required for PHP’s memcached integration), and we’ll also add the
following roles:

• geerlingguy.apache installs and configures the latest available version of the
Apache web server.

• geerlingguy.php installs and configures PHP to run through Apache.
• geerlingguy.php-mysql adds MySQL support to PHP.
• geerlingguy.php-memcached adds Memcached support to PHP.

Two first two tasks remove the default index.html home page included with Apache,
and replace it with our PHP app.

The last two tasks ensure SELinux is configured to allow Apache to communicate
with the database and memcached servers over the network. For more discussion on
how to configure SELinux, please see chapter 11.

As in the Varnish example, create the two files referenced in the above playbook.
First, vars.yml, alongside main.yml:

1 ---

2 firewall_allowed_tcp_ports:

3 - "22"

4 - "80"

Create a templates directory inside the playbooks/www directory, and inside, create
an index.php.j2 file. This file will use Jinja syntax to build a (relatively) simple PHP
script to display the health and status of all the servers in our infrastructure:

Chapter 9 - Ansible Cookbooks 205

1 <?php

2 /**

3 * @file

4 * Infrastructure test page.

5 *

6 * DO NOT use this in production. It is simply a PoC.

7 */

8

9 $mysql_servers = array(

10 {% for host in groups['lamp_db'] %}

11 '{{ host }}',

12 {% endfor %}

13);

14 $mysql_results = array();

15 foreach ($mysql_servers as $host) {

16 if ($result = mysql_test_connection($host)) {

17 $mysql_results[$host] = 'PASS\

18 ';

19 $mysql_results[$host] .= ' (' . $result['status'] . ')';

20 }

21 else {

22 $mysql_results[$host] = 'FAIL';

23 }

24 }

25

26 // Connect to Memcached.

27 $memcached_result = 'FAIL';

28 if (class_exists('Memcached')) {

29 $memcached = new Memcached;

30 $memcached->addServer('{{ groups['lamp_memcached'][0] }}', 11211);

31

32 // Test adding a value to memcached.

33 if ($memcached->add('test', 'success', 1)) {

34 $result = $memcached->get('test');

35 if ($result == 'success') {

36 $memcached_result = 'PASS';

Chapter 9 - Ansible Cookbooks 206

37 $memcached->delete('test');

38 }

39 }

40 }

41

42 /**

43 * Connect to a MySQL server and test the connection.

44 *

45 * @param string $host

46 * IP Address or hostname of the server.

47 *

48 * @return array

49 * Array with 'success' (bool) and 'status' ('slave' or 'master').

50 * Empty if connection failure.

51 */

52 function mysql_test_connection($host) {

53 $username = 'mycompany_user';

54 $password = 'secret';

55 try {

56 $db = new PDO(

57 'mysql:host=' . $host . ';dbname=mycompany_database',

58 $username,

59 $password,

60 array(PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION));

61

62 // Query to see if the server is configured as a master or slave.

63 $statement = $db->prepare("SELECT variable_value

64 FROM information_schema.global_variables

65 WHERE variable_name = 'LOG_BIN';");

66 $statement->execute();

67 $result = $statement->fetch();

68

69 return array(

70 'success' => TRUE,

71 'status' => ($result[0] == 'ON') ? 'master' : 'slave',

72);

Chapter 9 - Ansible Cookbooks 207

73 }

74 catch (PDOException $e) {

75 return array();

76 }

77 }

78 ?>

79 <!DOCTYPE html>

80 <html>

81 <head>

82 <title>Host {{ inventory_hostname }}</title>

83 <style>* { font-family: Helvetica, Arial, sans-serif }</style>

84 </head>

85 <body>

86 <h1>Host {{ inventory_hostname }}</h1>

87 <?php foreach ($mysql_results as $host => $result): ?>

88 <p>MySQL Connection (<?php print $host; ?>):

89 <?php print $result; ?></p>

90 <?php endforeach; ?>

91 <p>Memcached Connection: <?php print $memcached_result; ?></p>

92 </body>

93 </html>

Don’t try transcribing this example manually; you can get the code from
this book’s repository on GitHub. Visit the ansible-for-devops¹⁰¹ repository
and download the source for index.php.j2¹⁰²

This application is a bit more complex than most examples in the book, but here’s a
quick run through:

• (9-23) Iterate through all the lamp_db MySQL hosts defined in the playbook
inventory and test the ability to connect to them—as well as whether they are
configured as master or slave, using the mysql_test_connection() function
defined later (40-73).

¹⁰¹https://github.com/geerlingguy/ansible-for-devops
¹⁰²https://github.com/geerlingguy/ansible-for-devops/blob/master/lamp-infrastructure/playbooks/www/templates/

index.php.j2

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops/blob/master/lamp-infrastructure/playbooks/www/templates/index.php.j2
https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops/blob/master/lamp-infrastructure/playbooks/www/templates/index.php.j2
https://github.com/geerlingguy/ansible-for-devops/blob/master/lamp-infrastructure/playbooks/www/templates/index.php.j2

Chapter 9 - Ansible Cookbooks 208

• (25-39) Check the first defined lamp_memcachedMemcached host defined in the
playbook inventory, confirming the ability to connect with the cache and to
create, retrieve, or delete a cached value.

• (41-76) Define the mysql_test_connection() function, which tests the ability
to connect to a MySQL server and also returns its replication status.

• (78-91) Print the results of all the MySQL and Memcached tests, along with {{

inventory_hostname }} as the page title, so we can easily see which web server
is serving the viewed page.

At this point, the heart of our infrastructure—the application that will test and display
the status of all our servers—is ready to go.

Memcached

Compared to the earlier playbooks, the Memcached playbook is quite simple. Create
playbooks/memcached/main.yml with the following contents:

1 ---

2 - hosts: lamp_memcached

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.firewall

10 - geerlingguy.memcached

As with the other servers, we need to ensure only the required TCP ports are open
using the simple geerlingguy.firewall role. Next we install Memcached using the
geerlingguy.memcached role.

In our vars.yml file (again, alongside main.yml), add the following:

Chapter 9 - Ansible Cookbooks 209

1 ---

2 firewall_allowed_tcp_ports:

3 - "22"

4 firewall_additional_rules:

5 - "iptables -A INPUT -p tcp --dport 11211 -s \

6 {{ groups['lamp_www'][0] }} -j ACCEPT"

7 - "iptables -A INPUT -p tcp --dport 11211 -s \

8 {{ groups['lamp_www'][1] }} -j ACCEPT"

9

10 memcached_listen_ip: "0.0.0.0"

We need port 22 open for remote access, and for Memcached, we’re adding manual
iptables rules to allow access on port 11211 for the web servers only. We add one
rule per lamp_www server by drilling down into each item in the generated groups

variable that Ansible uses to track all inventory groups currently available. We also
bind Memcached to all interfaces so it will accept connections through the server’s
network interface.

The principle of least privilege “requires that in a particular abstraction
layer of a computing environment, every module … must be able to access
only the information and resources that are necessary for its legitimate
purpose” (Source: Wikipedia¹⁰³). Always restrict services and ports to only
those servers or users that need access!

MySQL

The MySQL configuration is more complex than the other servers because we need
to configure MySQL users per-host and configure replication. Because we want
to maintain an independent and flexible playbook, we also need to dynamically
create some variables so MySQL will get the right server addresses in any potential
environment.

Let’s first create the main playbook, playbooks/db/main.yml:

¹⁰³http://en.wikipedia.org/wiki/Principle_of_least_privilege

http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege

Chapter 9 - Ansible Cookbooks 210

1 ---

2 - hosts: lamp_db

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 pre_tasks:

9 - name: Create dynamic MySQL variables.

10 set_fact:

11 mysql_users:

12 - name: mycompany_user

13 host: "{{ groups['lamp_www'][0] }}"

14 password: secret

15 priv: "*.*:SELECT"

16 - name: mycompany_user

17 host: "{{ groups['lamp_www'][1] }}"

18 password: secret

19 priv: "*.*:SELECT"

20 mysql_replication_master: "{{ groups['a4d.lamp.db.1'][0] }}"

21

22 roles:

23 - geerlingguy.firewall

24 - geerlingguy.mysql

Most of the playbook is straightforward, but in this instance, we’re using set_fact

as a pre_task (to be run before the geerlingguy.firewall and geerlingguy.mysql

roles) to dynamically create variables for MySQL configuration.

set_fact allows us to define variables at runtime, so we can have all server IP
addresses available, even if the servers were freshly provisioned at the beginning
of the playbook’s run. We’ll create two variables:

• mysql_users is a list of users the geerlingguy.mysql role will create when it
runs. This variable will be used on all database servers so both of the two lamp_-
www servers get SELECT privileges on all databases.

Chapter 9 - Ansible Cookbooks 211

• mysql_replication_master is used to indicate to the geerlingguy.mysql role
which database server is the master; it will perform certain steps differently
depending on whether the server being configured is a master or slave, and
ensure that all the slaves are configured to replicate data from the master.

We’ll need a few other normal variables to configure MySQL, so we’ll add them
alongside the firewall variable in playbooks/db/vars.yml:

1 ---

2 firewall_allowed_tcp_ports:

3 - "22"

4 - "3306"

5

6 mysql_replication_user:

7 name: replication

8 password: secret

9

10 mysql_databases:

11 - name: mycompany_database

12 collation: utf8_general_ci

13 encoding: utf8

We’re opening port 3306 to anyone, but according to the principle of least privilege
discussed earlier, youwould be justified in restricting this port to only the servers and
users that need access to MySQL (similar to the memcached server configuration). In
this case, the attack vector is mitigated because MySQL’s own authentication layer
is used through the mysql_user variable generated in main.yml.

We are defining two MySQL variables: mysql_replication_user to be used for
master and slave replication, and mysql_databases to define a list of databases that
will be created (if they don’t already exist) on the database servers.

With the configuration of the database servers complete, the server-specific play-
books are ready to go.

Chapter 9 - Ansible Cookbooks 212

Main Playbook for Configuring All Servers

A simple playbook including each of the group-specific playbooks is all we need for
the overall configuration to take place. Create configure.yml in the project’s root
directory, with the following contents:

1 ---

2 - import_playbook: playbooks/varnish/main.yml

3 - import_playbook: playbooks/www/main.yml

4 - import_playbook: playbooks/db/main.yml

5 - import_playbook: playbooks/memcached/main.yml

At this point, if you had some already-booted servers and statically defined inventory
groups like lamp_www, lamp_db, etc., you could run ansible-playbook configure.yml

and have a full HA infrastructure at the ready!

But we’re going to continue to make our playbooks more flexible and useful.

Getting the required roles

As mentioned in the Chapter 6, Ansible allows you to define all the required Ansible
Galaxy roles for a given project in a requirements.yml file. Instead of having to
remember to run ansible-galaxy role install -y [role1] [role2] [role3] for
each of the roles we’re using, we can create requirements.yml in the root of our
project, with the following contents:

1 ---

2 roles:

3 - name: geerlingguy.firewall

4 - name: geerlingguy.repo-epel

5 - name: geerlingguy.varnish

6 - name: geerlingguy.apache

7 - name: geerlingguy.php

8 - name: geerlingguy.php-mysql

9 - name: geerlingguy.php-memcached

10 - name: geerlingguy.mysql

11 - name: geerlingguy.memcached

Chapter 9 - Ansible Cookbooks 213

To make sure all the required dependencies are installed, run ansible-galaxy

install -r requirements.yml from within the project’s root.

Vagrantfile for Local Infrastructure via VirtualBox

As with many other examples in this book, we can use Vagrant and VirtualBox to
build and configure the infrastructure locally. This lets us test things as much as we
want with zero cost, and usually results in faster testing cycles, since everything is
orchestrated over a local private network on a (hopefully) beefy workstation.

Our basic Vagrantfile layout will be something like the following:

1. Define a base box (in this case, CentOS 7) and VM hardware defaults.
2. Define all the VMs to be built, with VM-specific IP addresses and hostname

configurations.
3. Define the Ansible provisioner along with the last VM, so Ansible can run once

at the end of Vagrant’s build cycle.

Here’s the Vagrantfile in all its glory:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure("2") do |config|

5 # Base VM OS configuration.

6 config.vm.box = "geerlingguy/centos7"

7 config.ssh.insert_key = false

8 config.vm.synced_folder '.', '/vagrant', disabled: true

9

10 # General VirtualBox VM configuration.

11 config.vm.provider :virtualbox do |v|

12 v.memory = 512

13 v.cpus = 1

14 v.linked_clone = true

15 v.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]

16 v.customize ["modifyvm", :id, "--ioapic", "on"]

Chapter 9 - Ansible Cookbooks 214

17 end

18

19 # Varnish.

20 config.vm.define "varnish" do |varnish|

21 varnish.vm.hostname = "varnish.test"

22 varnish.vm.network :private_network, ip: "192.168.56.2"

23 end

24

25 # Apache.

26 config.vm.define "www1" do |www1|

27 www1.vm.hostname = "www1.test"

28 www1.vm.network :private_network, ip: "192.168.56.3"

29

30 www1.vm.provision "shell",

31 inline: "sudo yum update -y"

32

33 www1.vm.provider :virtualbox do |v|

34 v.customize ["modifyvm", :id, "--memory", 512]

35 end

36 end

37

38 # Apache.

39 config.vm.define "www2" do |www2|

40 www2.vm.hostname = "www2.test"

41 www2.vm.network :private_network, ip: "192.168.56.4"

42

43 www2.vm.provision "shell",

44 inline: "sudo yum update -y"

45

46 www2.vm.provider :virtualbox do |v|

47 v.customize ["modifyvm", :id, "--memory", 512]

48 end

49 end

50

51 # MySQL.

52 config.vm.define "db1" do |db1|

Chapter 9 - Ansible Cookbooks 215

53 db1.vm.hostname = "db1.test"

54 db1.vm.network :private_network, ip: "192.168.56.5"

55 end

56

57 # MySQL.

58 config.vm.define "db2" do |db2|

59 db2.vm.hostname = "db2.test"

60 db2.vm.network :private_network, ip: "192.168.56.6"

61 end

62

63 # Memcached.

64 config.vm.define "memcached" do |memcached|

65 memcached.vm.hostname = "memcached.test"

66 memcached.vm.network :private_network, ip: "192.168.56.7"

67

68 # Run Ansible provisioner once for all VMs at the end.

69 memcached.vm.provision "ansible" do |ansible|

70 ansible.playbook = "configure.yml"

71 ansible.inventory_path = "inventories/vagrant/inventory"

72 ansible.limit = "all"

73 ansible.extra_vars = {

74 ansible_user: 'vagrant',

75 ansible_ssh_private_key_file: \

76 "~/.vagrant.d/insecure_private_key"

77 }

78 end

79 end

80 end

Most of the Vagrantfile is straightforward, and similar to other examples used in this
book. The last block of code, which defines the ansible provisioner configuration,
contains three extra values that are important for our purposes:

Chapter 9 - Ansible Cookbooks 216

1 ansible.inventory_path = "inventories/vagrant/inventory"

2 ansible.limit = "all"

3 ansible.extra_vars = {

4 ansible_user: 'vagrant',

5 ansible_ssh_private_key_file: "~/.vagrant.d/insecure_private_key"

6 }

1. ansible.inventory_path defines the inventory file for the ansible.playbook.
You could certainly create a dynamic inventory script for use with Vagrant,
but because we know the IP addresses ahead of time, and are expecting a few
specially-crafted inventory group names, it’s simpler to build the inventory file
for Vagrant provisioning by hand (we’ll do this next).

2. ansible.limit is set to all so Vagrant knows it should run theAnsible playbook
connected to all VMs, and not just the current VM. You could technically use
ansible.limitwith a provisioner configuration for each of the individual VMs,
and just run the VM-specific playbook through Vagrant, but our live production
infrastructure will be using one playbook to configure all the servers, so we’ll
do the same locally.

3. ansible.extra_vars contains the vagrant SSH user configuration for Ansible.
It’s more standard to include these settings in a static inventory file or use
Vagrant’s automatically-generated inventory file, but it’s easiest to set them
once for all servers here.

Before running vagrant up to see the fruits of our labor, we need to create an
inventory file for Vagrant at inventories/vagrant/inventory:

Chapter 9 - Ansible Cookbooks 217

1 [lamp_varnish]

2 192.168.56.2

3

4 [lamp_www]

5 192.168.56.3

6 192.168.56.4

7

8 [a4d.lamp.db.1]

9 192.168.56.5

10

11 [lamp_db]

12 192.168.56.5 mysql_replication_role=master

13 192.168.56.6 mysql_replication_role=slave

14

15 [lamp_memcached]

16 192.168.56.7

Now cd into the project’s root directory, run vagrant up, and after ten or fifteen
minutes, load http://192.168.56.2/ in your browser. Voila!

Highly Available Infrastructure - Success!

You should see something like the above screenshot. The PHP app displays the
current app server’s IP address, the individual MySQL servers’ status, and the Mem-
cached server status. Refresh the page a few times to verify Varnish is distributing
requests randomly between the two app servers.

We now have local infrastructure development covered, and Ansible makes it easy
to use the exact same configuration to build our infrastructure in the cloud.

Chapter 9 - Ansible Cookbooks 218

Provisioner Configuration: DigitalOcean

In Chapter 8, we learned provisioning and configuring DigitalOcean droplets in an
Ansible playbook is fairly simple. But we need to take provisioning a step further
by provisioning multiple droplets (one for each server in our infrastructure) and
dynamically grouping them so we can configure them after they are booted and
online.

For the sake of flexibility, let’s create a playbook for our DigitalOcean droplets
in provisioners/digitalocean.yml. This will allow us to add other provisioner
configurations later, alongside the digitalocean.yml playbook. As with our example
in Chapter 7, we will use a local connection to provision cloud instances. Begin the
playbook with:

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: false

Next we need to define some metadata to describe each of our droplets. For
simplicity’s sake, we’ll inline the droplets variable in this playbook:

6 vars:

7 droplets:

8 - { name: a4d.lamp.varnish, group: "lamp_varnish" }

9 - { name: a4d.lamp.www.1, group: "lamp_www" }

10 - { name: a4d.lamp.www.2, group: "lamp_www" }

11 - { name: a4d.lamp.db.1, group: "lamp_db" }

12 - { name: a4d.lamp.db.2, group: "lamp_db" }

13 - { name: a4d.lamp.memcached, group: "lamp_memcached" }

Each droplet is an object with two keys:

• name: The name of the Droplet for DigitalOcean’s listings and Ansible’s host
inventory.

• group: The Ansible inventory group for the droplet.

Chapter 9 - Ansible Cookbooks 219

Next we need to add a task to create the droplets, using the droplets list as a
guide, and as part of the same task, register each droplet’s information in a separate
dictionary, created_droplets:

15 tasks:

16 - name: Provision DigitalOcean droplets.

17 digital_ocean_droplet:

18 state: "{{ item.state | default('present') }}"

19 name: "{{ item.name }}"

20 private_networking: yes

21 size: "{{ item.size | default('1gb') }}"

22 image: "{{ item.image | default('centos-7-x64') }}"

23 region: "{{ item.region | default('nyc3') }}"

24 # Customize this default for your account.

25 ssh_keys:

26 - "{{ item.ssh_key | default('138954') }}"

27 unique_name: yes

28 register: created_droplets

29 with_items: "{{ droplets }}"

Many of the options (e.g. size) are defined as {{ item.property | default('default_-

value') }}, which allows us to use optional variables per droplet. For any of the
defined droplets, we could add size: 2gb (or another valid value), and it would
override the default value set in the task.

You could specify an SSH public key per droplet, or use the same key for
all hosts by providing a default (as I did above). In this example, I added an
SSH key to my DigitalOcean account, then used the DigitalOcean API to
retrieve the key’s numeric ID (as described in the previous chapter).

It’s best to use key-based authentication and add at least one SSH key
to your DigitalOcean account so Ansible can connect using secure keys
instead of insecure passwords—especially since these instances will be
created with only a root account.

We loop through all the defined droplets using with_items: droplets, and after
each droplet is created, we add the droplet’s metadata (name, IP address, etc.) to

Chapter 9 - Ansible Cookbooks 220

the created_droplets variable. Next, we’ll loop through that variable to build our
inventory on-the-fly so our configuration applies to the correct servers:

31 - name: Add DigitalOcean hosts to inventory groups.

32 add_host:

33 name: "{{ item.1.data.ip_address }}"

34 groups: "do,{{ droplets[item.0].group }},{{ item.1.data.droplet\

35 .name }}"

36 # You can dynamically add inventory variables per-host.

37 ansible_user: root

38 mysql_replication_role: >-

39 {{ 'master' if (item.1.data.droplet.name == 'a4d.lamp.db.1')

40 else 'slave' }}

41 mysql_server_id: "{{ item.0 }}"

42 when: item.1.data is defined

43 with_indexed_items: "{{ created_droplets.results }}"

You’ll notice a few interesting things happening in this task:

• This is the first time we’ve used with_indexed_items. Though less common,
this is a valuable loop feature because it adds a sequential and unique mysql_-
server_id. Though only the MySQL servers need a server ID set, it’s more
simple to dynamically create the variable for every server so each is available
when needed. with_indexed_items sets item.0 to the key of the item and item.1
to the value of the item.

• In addition to helping us create server IDs, with_indexed_items also helps us to
reliably set each droplet’s group. We could also consider using tags for groups,
but this example configures groups manually. By using the droplets variable
wemanually created earlier, we can set the proper group for a particular droplet.

• Finally, we add inventory variables per-host in add_host. To do this, we add the
variable name as a key and the variable value as that key’s value. Simple, but
powerful!

Chapter 9 - Ansible Cookbooks 221

There are a few different ways you can approach dynamic provisioning and
inventory management for your infrastructure. There are ways to avoid
using more exotic features of Ansible (e.g. with_indexed_items) and com-
plex if/else conditions, especially if you only use one cloud infrastructure
provider. This example is slightly more complex because the playbook is
being created to be interchangeable with similar provisioning playbooks.

The final step in our provisioning is to make sure all the droplets are booted and can
be reached via SSH. So at the end of the digitalocean.yml playbook, add another
play to be run on hosts in the do group we just defined:

44 - hosts: do

45 remote_user: root

46 gather_facts: false

47

48 tasks:

49 - name: Wait for hosts to become reachable.

50 wait_for_connection:

Once the server can be reached by Ansible (using the wait_for_connectionmodule),
we know the droplet is up and ready for configuration.

We’re now almost ready to provision and configure our entire infrastructure on
DigitalOcean, but first we need to create one last playbook to tie everything together.
Create provision.yml in the project root with the following contents:

1 ---

2 - import_playbook: provisioners/digitalocean.yml

3 - import_playbook: configure.yml

That’s it! Now, assuming you set the environment variable DO_API_TOKEN, you can
run $ ansible-playbook provision.yml to provision and configure the infrastruc-
ture on DigitalOcean.

The entire process should take about 15 minutes; once it’s complete, you should see
something like this:

Chapter 9 - Ansible Cookbooks 222

PLAY RECAP **

107.170.27.137 : ok=19 changed=13 unreachable=0 failed=0

107.170.3.23 : ok=13 changed=8 unreachable=0 failed=0

107.170.51.216 : ok=40 changed=18 unreachable=0 failed=0

107.170.54.218 : ok=27 changed=16 unreachable=0 failed=0

162.243.20.29 : ok=24 changed=15 unreachable=0 failed=0

192.241.181.197 : ok=40 changed=18 unreachable=0 failed=0

localhost : ok=2 changed=1 unreachable=0 failed=0

Visit the IP address of the varnish server, and you will be greeted with a status page
similar to the one generated by the Vagrant-based infrastructure:

Highly Available Infrastructure on DigitalOcean.

Because everything in this playbook is idempotent, running $ ansible-playbook

provision.yml again should report no changes, and this will help you verify that
everything is running correctly.

Ansible will also rebuild and reconfigure any droplets that might be missing from
your infrastructure. If you’re daring and would like to test this feature, just log into
your DigitalOcean account, delete one of the droplets just created by this playbook
(perhaps one of the two app servers), and then run the playbook again.

Now that we’ve tested our infrastructure on DigitalOcean, we can destroy the
droplets just as easily as we can create them. To do this, change the state parameter
in provisioners/digitalocean.yml to default to 'absent' and run $ ansible-playbook

provision.yml once more.

Next up, we’ll build the infrastructure a third time—on Amazon’s infrastructure.

Chapter 9 - Ansible Cookbooks 223

Provisioner Configuration: Amazon Web Services (EC2)

For Amazon Web Services, provisioning is slightly different. Amazon has a broader
ecosystem of services surrounding EC2 instances, so for our particular example we
will need to configure security groups prior to provisioning instances.

To begin, create aws.yml inside the provisioners directory and begin the playbook
the same way as for DigitalOcean:

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: false

First, we’ll define three variables to describe what AWS resources and region to use
for provisioning.

6 vars:

7 aws_profile: default

8 aws_region: us-east-1 # North Virginia

9 aws_ec2_ami: ami-06cf02a98a61f9f5e # CentOS 7

EC2 instances use security groups as an AWS-level firewall (which operates outside
the individual instance’s OS). We will need to define a list of security_groups

alongside our EC2 instances. First, the instances:

11 instances:

12 - name: a4d.lamp.varnish

13 group: "lamp_varnish"

14 security_group: ["default", "a4d_lamp_http"]

15 - name: a4d.lamp.www.1

16 group: "lamp_www"

17 security_group: ["default", "a4d_lamp_http"]

18 - name: a4d.lamp.www.2

19 group: "lamp_www"

20 security_group: ["default", "a4d_lamp_http"]

Chapter 9 - Ansible Cookbooks 224

21 - name: a4d.lamp.db.1

22 group: "lamp_db"

23 security_group: ["default", "a4d_lamp_db"]

24 - name: a4d.lamp.db.2

25 group: "lamp_db"

26 security_group: ["default", "a4d_lamp_db"]

27 - name: a4d.lamp.memcached

28 group: "lamp_memcached"

29 security_group: ["default", "a4d_lamp_memcached"]

Inside the instances variable, each instance is an object with three keys:

• name: The name of the instance, which we’ll use to tag the instance and ensure
only one instance is created per name.

• group: The Ansible inventory group in which the instance should belong.
• security_group: A list of security groups into which the instance will be placed.
The default security group is added to your AWS account upon creation, and
has one rule to allow outgoing traffic on any port to any IP address.

If you use AWS exclusively, it would be best to use autoscaling groups and
change the design of this infrastructure. For this example, we just need to
ensure that the six instances we explicitly define are created, so we’re using
particular names and an exact_count to enforce the 1:1 relationship.

With our instances defined, we’ll next define a security_groups variable containing
all the required security group configuration for each server:

Chapter 9 - Ansible Cookbooks 225

31 security_groups:

32 - name: a4d_lamp_http

33 rules:

34 - proto: tcp

35 from_port: 80

36 to_port: 80

37 cidr_ip: 0.0.0.0/0

38 - proto: tcp

39 from_port: 22

40 to_port: 22

41 cidr_ip: 0.0.0.0/0

42 rules_egress: []

43

44 - name: a4d_lamp_db

45 rules:

46 - proto: tcp

47 from_port: 3306

48 to_port: 3306

49 cidr_ip: 0.0.0.0/0

50 - proto: tcp

51 from_port: 22

52 to_port: 22

53 cidr_ip: 0.0.0.0/0

54 rules_egress: []

55

56 - name: a4d_lamp_memcached

57 rules:

58 - proto: tcp

59 from_port: 11211

60 to_port: 11211

61 cidr_ip: 0.0.0.0/0

62 - proto: tcp

63 from_port: 22

64 to_port: 22

65 cidr_ip: 0.0.0.0/0

66 rules_egress: []

Chapter 9 - Ansible Cookbooks 226

Each security group has a name (which was used to identify the security group in the
instances list), rules (a list of firewall rules—like protocol, ports, and IP ranges—to
limit incoming traffic), and rules_egress (a list of firewall rules to limit outgoing
traffic).

We need three security groups: a4d_lamp_http to open port 80, a4d_lamp_db to open
port 3306, and a4d_lamp_memcached to open port 11211.

Now that we have all the data we need to set up security groups and instances, our
first task is to create or verify the existence of the security groups:

68 tasks:

69 - name: Configure EC2 Security Groups.

70 ec2_group:

71 name: "{{ item.name }}"

72 description: Example EC2 security group for A4D.

73 state: present

74 rules: "{{ item.rules }}"

75 rules_egress: "{{ item.rules_egress }}"

76 profile: "{{ aws_profile }}"

77 region: "{{ aws_region }}"

78 with_items: "{{ security_groups }}"

The ec2_group requires a name, region, and rules for each security group. Security
groups will be created if they don’t exist, modified to match the supplied values if
they do exist, or verified if they both exist and match the given values.

With the security groups configured, we can provision the defined EC2 instances by
looping through instances with the ec2 module:

Chapter 9 - Ansible Cookbooks 227

75 - name: Provision EC2 instances.

76 ec2:

77 key_name: "{{ item.ssh_key | default('lamp_aws') }}"

78 instance_tags:

79 Name: "{{ item.name | default('') }}"

80 Application: lamp_aws

81 inventory_group: "{{ item.group | default('') }}"

82 inventory_host: "{{ item.name | default('') }}"

83 group: "{{ item.security_group | default('') }}"

84 instance_type: "{{ item.type | default('t2.micro')}}"

85 image: "{{ aws_ec2_ami }}"

86 wait: yes

87 wait_timeout: 500

88 exact_count: 1

89 count_tag:

90 inventory_host: "{{ item.name | default('') }}"

91 profile: "{{ aws_profile }}"

92 region: "{{ aws_region }}"

93 register: created_instances

94 with_items: "{{ instances }}"

This example is slightly more complex than the DigitalOcean example, and a few
parts warrant a deeper look:

• EC2 allows SSH keys to be defined by name—in my case, I have a key lamp_aws

in my AWS account. You should set the key_name default to a key that you have
in your account.

• Instance tags are tags that AWS will attach to your instance, for categorization
purposes. Besides the Name tag (which is used for display purposes in the AWS
Console), you can add whatever tags you want, to help categorize instances.

• t2.micro was used as the default instance type, since it falls within EC2’s free
tier usage. If you just set up an account and keep all AWS resource usage within
free tier limits, you won’t be billed anything.

• exact_count and count_tag work together to ensure AWS provisions only one
of each of the instances we defined. The count_tag tells the ec2 module to
match on the inventory_host value, and exact_count tells the module to only

Chapter 9 - Ansible Cookbooks 228

provision 1 instance. If you wanted to remove all your instances, you could set
exact_count to 0 and run the playbook again.

Each provisioned instance will have its metadata added to the registered created_-

instances variable, which we will use to build Ansible inventory groups for the
server configuration playbooks.

100 - name: Add EC2 instances to inventory groups.

101 add_host:

102 name: "{{ item.1.tagged_instances.0.public_ip }}"

103 groups: "aws,{{ item.1.item.group }},{{ item.1.item.name }}"

104 # You can dynamically add inventory variables per-host.

105 ansible_user: centos

106 host_key_checking: false

107 mysql_replication_role: >-

108 {{ 'master' if (item.1.item.name == 'a4d.lamp.db.1')

109 else 'slave' }}

110 mysql_server_id: "{{ item.0 }}"

111 when: item.1.instances is defined

112 with_indexed_items: "{{ created_instances.results }}"

This add_host example is slightly simpler than the one for DigitalOcean, because
AWS attaches metadata to EC2 instances which we can re-use when building groups
or hostnames (e.g. item.1.item.group). We don’t have to use list indexes to fetch
group names from the original instances variable.

We still use with_indexed_items so we can use the index to generate a unique ID per
server for use in building the MySQL master-slave replication.

The final step in provisioning the EC2 instances is to ensure they are booted and able
to accept connections.

Chapter 9 - Ansible Cookbooks 229

114 - hosts: aws

115 gather_facts: false

116

117 tasks:

118 - name: Wait for hosts to become available.

119 wait_for_connection:

Now, modify the provision.yml file in the root of the project folder and change the
provisioners import to look like the following:

1 ---

2 - import_playbook: provisioners/aws.yml

3 - import_playbook: configure.yml

Assuming the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_-

KEY are set in your current terminal session, you can run $ ansible-playbook

provision.yml to provision and configure the infrastructure on AWS.

The entire process should take about 15 minutes, and once it’s complete, you should
see something like this:

PLAY RECAP **

54.148.100.44 : ok=24 changed=16 unreachable=0 failed=0

54.148.120.23 : ok=40 changed=19 unreachable=0 failed=0

54.148.41.134 : ok=40 changed=19 unreachable=0 failed=0

54.148.56.137 : ok=13 changed=9 unreachable=0 failed=0

54.69.160.32 : ok=27 changed=17 unreachable=0 failed=0

54.69.86.187 : ok=19 changed=14 unreachable=0 failed=0

localhost : ok=3 changed=1 unreachable=0 failed=0

Visit the IP address of the Varnish server, and you will be greeted with a status page
similar to the one generated by the Vagrant and DigitalOcean-based infrastructure:

Chapter 9 - Ansible Cookbooks 230

Highly Available Infrastructure on AWS EC2.

As with the earlier examples, running ansible-playbook provision.yml again
should produce no changes, because everything in this playbook is idempotent. If
one of your instances was somehow terminated, running the playbook again would
recreate and reconfigure the instance in a few minutes.

To terminate all the provisioned instances, you can change the exact_count in the
ec2 task to 0, and run $ ansible-playbook provision.yml again.

AWS EC2 Dynamic inventory plugin

If you’d like to connect to the EC2 servers provisioned in AWS in another playbook,
you don’t need to get the information in a play and use add_hosts to build the
inventory inside a playbook.

Like the DigitalOcean example in the previous chapter, you can use the aws_ec2

dynamic inventory plugin to work with the servers in an AWS account.

Create an aws_ec2.yml inventory configuration file in an inventories/aws directory
under the main playbook directory, and add the following:

Chapter 9 - Ansible Cookbooks 231

1 ---

2 plugin: aws_ec2

3

4 regions:

5 - us-east-1

6

7 hostnames:

8 - ip-address

9

10 keyed_groups:

11 - key: tags.inventory_group

To verify the inventory source works correctly, use the ansible-inventory com-
mand:

$ ansible-inventory -i inventories/aws/aws_ec2.yml --graph

@all:

|--@aws_ec2:

| |--54.148.41.134

| |--54.148.100.44

| |--54.69.160.32

| |--54.69.86.187

| |--54.148.120.23

| |--54.148.56.137

|--@lamp_aws:

| |--54.148.41.134

| |--54.148.100.44

| |--54.69.160.32

| |--54.69.86.187

| |--54.148.120.23

| |--54.148.56.137

|--@lamp_db:

| |--54.148.100.44

| |--54.148.120.23

|--@lamp_memcached:

| |--54.148.41.134

Chapter 9 - Ansible Cookbooks 232

|--@lamp_varnish:

| |--54.148.56.137

|--@lamp_www:

| |--54.69.160.32

| |--54.69.86.187

|--@ungrouped:

You can then use these dynamic inventory groups in other playbooks to run tasks on
all the LAMP servers (e.g. lamp_aws), or just one subset (e.g. lamp_db or lamp_www).

Summary

We defined an entire highly-available PHP application infrastructure in a series of
short Ansible playbooks, and then created provisioning configuration to build the
infrastructure on either local VMs, DigitalOcean droplets, or AWS EC2 instances.

Once you start working on building infrastructure this way—by abstracting individ-
ual servers, then abstracting cloud provisioning—you’ll start to see some of Ansible’s
true power of being more than just a configuration management tool. Imagine being
able to create your own multi-datacenter, multi-provider infrastructure with Ansible
and some basic configuration.

Amazon, DigitalOcean, Rackspace and other hosting providers have their own
tooling and unique infrastructure merits. However, building infrastructure in a
provider-agnostic fashion provides the agility and flexibility that allow you to treat
hosting providers as commodities, and gives you the freedom to build more reliable
and more performant application infrastructure.

Even if you plan on running everything within one hosting provider’s network (or
in a private cloud, or even on a few bare metal servers), Ansible provides deep stack-
specific integration so you can dowhatever you need to do andmanage the provider’s
services within your playbooks.

You can find the entire contents of this example in the Ansible for DevOps
GitHub repository¹⁰⁴, in the lamp-infrastructure directory.

¹⁰⁴https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 9 - Ansible Cookbooks 233

ELK Logging with Ansible

Though application, database, and backup servers may be some of the most mission-
critical components of a well-rounded infrastructure, one area that is equally
important is a decent logging system.

In the old days when one or two servers could handle an entire website or
application, you could work with built-in logfiles and rsyslog to troubleshoot issues
or check trends in performance, errors, or overall traffic. With a typical modern
infrastructure—like the example above, with six separate servers—it pays dividends
to find a better solution for application, server, and firewall/authentication logging.
Plain text files, logrotate, and grep don’t cut it anymore.

Among variousmodern logging and reporting toolsets, the ‘ELK’ stack (Elasticsearch,
Logstash, and Kibana) has come to the fore as one of the best-performing and easiest-
to-configure open source centralized logging solutions.

An example Kibana logging dashboard.

In our example, we’ll configure a single ELK server to handle aggregation, searching,
and graphical display of logged data from a variety of other servers, and give a

Chapter 9 - Ansible Cookbooks 234

configuration example to aggregate common system and web server logs.

ELK Playbook

Just like our previous example, we’re going to let a few roles from Ansible Galaxy
do the heavy lifting of actually installing and configuring Elasticsearch, Logstash,
Filebeat, and Kibana. If you’re interested in reading through the roles that do this
work, feel free to peruse them after they’ve been downloaded.

In this example, I’m going to highlight the important parts rather than walk through
each role and variable in detail. Then I’ll show how you can use this base server to
aggregate logs, then how to point other servers’ log files to the central server using
Filebeat.

Here’s our main playbook, saved as provisioning/elk/main.yml:

1 ---

2 - hosts: logs

3 gather_facts: yes

4

5 vars_files:

6 - vars/main.yml

7

8 pre_tasks:

9 - name: Update apt cache if needed.

10 apt: update_cache=yes cache_valid_time=86400

11

12 roles:

13 - geerlingguy.java

14 - geerlingguy.nginx

15 - geerlingguy.pip

16 - geerlingguy.elasticsearch

17 - geerlingguy.elasticsearch-curator

18 - geerlingguy.kibana

19 - geerlingguy.logstash

20 - geerlingguy.filebeat

Chapter 9 - Ansible Cookbooks 235

This assumes you have a logs group in your inventory with at least one server listed.
It also assumes you have all of those roles installed via Galaxy, using the following
requirements.yml:

1 ---

2 roles:

3 - name: geerlingguy.java

4 - name: geerlingguy.nginx

5 - name: geerlingguy.pip

6 - name: geerlingguy.elasticsearch

7 version: 5.0.0

8 - name: geerlingguy.elasticsearch-curator

9 version: 2.1.0

10 - name: geerlingguy.kibana

11 version: 4.0.0

12 - name: geerlingguy.logstash

13 version: 5.1.0

14 - name: geerlingguy.filebeat

15 version: 3.0.1

This example sets specific versions for some of the roles, because the ELK
stack tools only work together well if you install a specific set of versions.
For many projects, I specify a version for every dependency so I can choose
when to upgrade to a newer role version that might have breaking changes.

The playbook includes a vars file located in provisioning/elk/vars/main.yml, so
create that file and put the following inside:

Chapter 9 - Ansible Cookbooks 236

1 ---

2 java_packages:

3 - openjdk-11-jdk

4

5 nginx_user: www-data

6 nginx_remove_default_vhost: true

7 nginx_vhosts:

8 # Kibana proxy.

9 - listen: "80 default_server"

10 filename: kibana.conf

11 server_name: logs.test

12 extra_parameters: |

13 location / {

14 include /etc/nginx/proxy_params;

15 proxy_pass http://localhost:5601;

16 proxy_set_header Authorization "";

17 proxy_read_timeout 90s;

18 }

19

20 elasticsearch_curator_pip_package: python3-pip

21

22 logstash_ssl_key_file: elk-example.p8

23 logstash_ssl_certificate_file: elk-example.crt

24

25 filebeat_output_logstash_enabled: true

26 filebeat_output_logstash_hosts:

27 - "logs.test:5044"

28

29 filebeat_ssl_key_file: elk-example.p8

30 filebeat_ssl_certificate_file: elk-example.crt

31 filebeat_ssl_insecure: "true"

32

33 filebeat_inputs:

34 - type: log

35 paths:

36 - /var/log/auth.log

Chapter 9 - Ansible Cookbooks 237

The Nginx variables define one server directive, which proxies requests on port 80
to the Kibana instance running on port 5601 (Kibana’s default port).

The Logstash SSL variables give the name of a local file which will be copied into
place and used by Logstash to encrypt log traffic to and from Logstash. You can
generate the certificate using the command:

openssl req -x509 -batch -nodes -days 3650 -newkey rsa:2048 -keyout elk\

-example.key -out elk-example.crt -subj '/CN=logs.test'

Set the CN value to the hostname of your ELK server (in our example, logs.test.
Then convert the key format to pkcs8 (the format required by Logstash) using the
command:

openssl pkcs8 -in elk-example.key -topk8 -nocrypt -out elk-example.p8

The Filebeat variables tell Filebeat to connect to the Logstash server (in this case, the
hostname logs.test on the default Logstash port 5044), and supply the certificate
and key Filebeat should use to encrypt log traffic. The filebeat_ssl_insecure

variable tells Logstash to accept a self-signed certificate like the one we generated
with openssl.

The last variable, filebeat_inputs, supplies a list of inputs Filebeat will pick up and
stream to Logstash. In this case, it’s just one input, the auth.log file which logs all
authentication-related events on a Debian-based server.

If you want to get this ELK server up and running quickly, you can create a local
VM using Vagrant like you have in most other examples in the book. Create a
Vagrantfile in the same directory as the provisioning folder, with the following
contents:

Chapter 9 - Ansible Cookbooks 238

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 VAGRANTFILE_API_VERSION = "2"

5

6 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

7 config.vm.box = "geerlingguy/ubuntu2004"

8 config.vm.synced_folder '.', '/vagrant', disabled: true

9 config.ssh.insert_key = false

10

11 config.vm.provider :virtualbox do |v|

12 v.memory = 4096

13 v.cpus = 2

14 v.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]

15 v.customize ["modifyvm", :id, "--ioapic", "on"]

16 end

17

18 # ELK server.

19 config.vm.define "logs" do |logs|

20 logs.vm.hostname = "logs.test"

21 logs.vm.network :private_network, ip: "192.168.56.90"

22

23 logs.vm.provision :ansible do |ansible|

24 ansible.playbook = "provisioning/elk/main.yml"

25 ansible.inventory_path = "provisioning/elk/inventory"

26 ansible.become = true

27 end

28 end

29

30 end

This Vagrant configuration expects an inventory file at provisioning/elk/inventory,
so create one with the following contents:

Chapter 9 - Ansible Cookbooks 239

1 [logs]

2 logs.test ansible_ssh_host=192.168.56.90 ansible_ssh_port=22

Now, run vagrant up. The build should take about fiveminutes, and upon completion,
if you add a line like logs.test 192.168.56.90 to your /etc/hosts file, you can visit
http://logs.test/ in your browser and see Kibana’s default homepage:

Kibana’s default homepage.

You can start exploring log data after configuring Kibana to search filebeat indices:

1. Click on the home page link to ‘Connect to your Elasticsearch index’
2. Enter an index pattern like filebeat-* (which will match all Filebeat indices),

and click ‘Next step’
3. Choose @timestamp for the Time Filter field name, and click ‘Create index

pattern’

Now that Kibana knows how to read the filebeat index, you can discover and search
through log data in the ‘Discover’ UI, which is the top link in the sidebar:

Chapter 9 - Ansible Cookbooks 240

Exploring log data from filebeat.

We won’t dive too deep into customizing Kibana’s interface with saved searches, vi-
sualizations, and dashboards, since there are many guides to using Kibana, including
Kibana’s official guide¹⁰⁵.

The screenshots in this example are from Kibana 7.x; other versions may
have a slightly different interface.

Forwarding Logs from Other Servers

It’s great that we have the ELK stack running. Elasticsearch will store and make
available log data with one search index per day, Logstash will listen for log
entries, Filebeat will send entries in /var/log/auth.log to Logstash, and Kibana will
organize the logged data in useful visualizations.

Configuring additional servers to direct their logs to our new Logstash server is fairly
simple using Filebeat. The basic steps we’ll follow are:

¹⁰⁵https://www.elastic.co/guide/en/kibana/current/tutorial-build-dashboard.html

https://www.elastic.co/guide/en/kibana/current/tutorial-build-dashboard.html
https://www.elastic.co/guide/en/kibana/current/tutorial-build-dashboard.html

Chapter 9 - Ansible Cookbooks 241

1. Set up another server in the Vagrantfile.
2. Set up an Ansible playbook to install and configure Filebeat alongside the

application running on the server.
3. Boot the server and watch as the logs are forwarded to the main ELK server.

Let’s begin by creating a new Nginx web server. It’s useful to monitor web server
access logs for a variety of reasons, especially to watch for traffic spikes and increases
in non-200 responses for certain resources. Add the following server definition inside
the Vagrantfile, just after the end of the ELK server definition:

30 # Web server.

31 config.vm.define "web" do |web|

32 web.vm.hostname = "web.test"

33 web.vm.network :private_network, ip: "192.168.56.91"

34

35 web.vm.provider :virtualbox do |v|

36 v.memory = 512

37 v.cpus = 1

38 end

39

40 web.vm.provision :ansible do |ansible|

41 ansible.playbook = "provisioning/web/main.yml"

42 ansible.inventory_path = "provisioning/web/inventory"

43 ansible.become = true

44 end

45 end

We’ll next set up the playbook to install and configure both Nginx and Filebeat, at
provisioning/web/main.yml:

Chapter 9 - Ansible Cookbooks 242

1 ---

2 - hosts: web

3 gather_facts: yes

4

5 vars_files:

6 - vars/main.yml

7

8 pre_tasks:

9 - name: Update apt cache if needed.

10 apt: update_cache=yes cache_valid_time=86400

11

12 roles:

13 - geerlingguy.nginx

14 - geerlingguy.filebeat

15

16 tasks:

17 - name: Set up virtual host for testing.

18 copy:

19 src: files/example.conf

20 dest: /etc/nginx/sites-enabled/example.conf

21 owner: root

22 group: root

23 mode: 0644

24 notify: restart nginx

25

26 - name: Ensure logs server is in hosts file.

27 lineinfile:

28 dest: /etc/hosts

29 regexp: '.*logs\.test$'

30 line: "192.168.56.90 logs.test"

31 state: present

This playbook runs the geerlingguy.nginx and geerlingguy.filebeat roles, and
in the tasks, there are two additional tasks: one to configure a server in Nginx’s
configuration (example.conf), and one to ensure the webserver knows the correct IP
address for the logs.test server.

Chapter 9 - Ansible Cookbooks 243

Create theNginx configuration file at the path provisioning/web/files/example.conf,
and define one Nginx virtualhost for our testing:

1 server {

2 listen 80 default_server;

3

4 root /usr/share/nginx/www;

5 index index.html index.htm;

6

7 access_log /var/log/nginx/access.log combined;

8 error_log /var/log/nginx/error.log debug;

9 }

Since this is the only server definition, and it’s set as the default_server on port 80,
all requests will be directed to it.We routed the access_log to /var/log/nginx/access.log,
and told Nginx to write log entries using the combined format, which is how our
Logstash server expects nginx access logs to be formatted.

Next, set up the required variables to tell the nginx and logstash-forwarder roles
how to configure their respective services. Inside provisioning/web/vars/main.yml:

1 ---

2 nginx_user: www-data

3 nginx_remove_default_vhost: true

4

5 filebeat_output_logstash_enabled: true

6 filebeat_output_logstash_hosts:

7 - "logs.test:5044"

8

9 filebeat_ssl_key_file: elk-example.p8

10 filebeat_ssl_certificate_file: elk-example.crt

11 filebeat_ssl_insecure: "true"

12

13 filebeat_inputs:

14 - type: log

15 paths:

Chapter 9 - Ansible Cookbooks 244

16 - /var/log/auth.log

17 - type: log

18 paths:

19 - /var/log/nginx/access.log

The nginx variables remove the default virtualhost entry and ensure Nginx will run
optimally on our Ubuntu server. The filebeat variables tell the filebeat role how to
connect to the central ELK server, and which logs to deliver to Logstash:

• filebeat_output_logstash_enabled and _hosts: Tells the role to configure
Filebeat to connect to Logstash, and the host and port to use.

• logstash_ssl_*: Provide a key and certificate to use for encrypted log transport
(note that these files should be in the same directory as the playbook, copied
over from the elk playbook).

• filebeat_inputs: Defines a list of inputs, which identify log files or other
types of log inputs. In this case, we’re configuring the authentication log
(/var/log/auth.log), which is a syslog-formatted log file, and the combined-
format access log from Nginx (/var/log/nginx/access.log).

To allow Vagrant to pass the proper connection details to Ansible, create a file named
provisioning/web/inventory with the web.test host details:

1 [web]

2 web.test ansible_ssh_host=192.168.56.91 ansible_ssh_port=22

Run vagrant up again. Vagrant should verify that the first server (logs) is running,
then create and run the Ansible provisioner on the newly-defined web Nginx server.

You can load http://192.168.56.91/ or http://web.test/ in your browser, and you
should see a Welcome to nginx!message on the page. You can refresh the page a few
times, then switch back over to http://logs.test/ to view some new log entries on
the ELK server:

Chapter 9 - Ansible Cookbooks 245

Entries populating the Logstash Search Kibana dashboard.

If you refresh the page a few times, and no entries show up in the Kibana
search, Nginx may be buffering the log entries. In this case, keep refreshing
a while (so you generate a few dozen or hundred entries), and Nginx will
eventually write the entries to disk (thus allowing Filebeat to convey the
logs to the Logstash server). Read more about Nginx log buffering in the
Nginx’s ngx_http_log_module documentation¹⁰⁶.

A few requests being logged through logstash forwarder isn’t all that exciting. Let’s
use the popular ab tool available most anywhere to put some load on the web server.
On a modest laptop, running the command below resulted in Nginx serving around
1,200 requests per second.

ab -n 20000 -c 50 http://web.test/

During the course of the load test, I set Kibana to show only the past 5 minutes of
log data (automatically refreshed every 5 seconds) and I could monitor the requests
on the ELK server just a few seconds after they were served by Nginx:

¹⁰⁶http://nginx.org/en/docs/http/ngx_http_log_module.html

http://nginx.org/en/docs/http/ngx_http_log_module.html
http://nginx.org/en/docs/http/ngx_http_log_module.html

Chapter 9 - Ansible Cookbooks 246

Monitoring a deluge of Nginx requests in near-realtime.

Filebeat uses a highly-efficient TCP-like protocol, Lumberjack, to transmit log entries
securely between servers. With the right tuning and scaling, you can efficiently
process and display thousands of requests per second across your infrastructure! For
most, even the simple example demonstrated abovewould adequately cover an entire
infrastructure’s logging and log analysis needs.

Summary

Log aggregation and analysis are two fields that see constant improvements and
innovation. There are many SaaS products and proprietary solutions that can assist
with logging, but few match the flexibility, security, and TCO of Elasticsearch,
Logstash and Kibana.

Ansible is the simplest way to configure an ELK server and direct all your infrastruc-
ture’s pertinent log data to the server.

Chapter 9 - Ansible Cookbooks 247

GlusterFS Distributed File System
Configuration with Ansible

Modern infrastructure often involves some amount of horizontal scaling; instead
of having one giant server with one storage volume, one database, one application
instance, etc., most apps use two, four, ten, or dozens of servers.

GlusterFS is a distributed filesystem for servers.

Many applications can be scaled horizontally with ease. But what happens when you
need shared resources, like files, application code, or other transient data, to be shared
on all the servers? And how do you have this data scale out with your infrastructure,
in a fast but reliable way? There are many different approaches to synchronizing or
distributing files across servers:

• Set up rsync either on cron or via inotify to synchronize smaller sets of files on
a regular basis.

• Store everything in a code repository (e.g. Git, SVN, etc.) and deploy files to
each server using Ansible.

• Have one large volume on a file server and mount it via NFS or some other file
sharing protocol.

• Have one master SAN that’s mounted on each of the servers.

Chapter 9 - Ansible Cookbooks 248

• Use a distributed file system, like Gluster, Lustre, Fraunhofer, or Ceph.

Some options are easier to set up than others, and all have benefits—and draw-
backs. Rsync, git, or NFS offer simple initial setup, and low impact on filesystem
performance (in many scenarios). But if you need more flexibility and scalability,
less network overhead, and greater fault tolerance, you will have to consider
something that requires more configuration (e.g. a distributed file system) and/or
more hardware (e.g. a SAN).

GlusterFS is licensed under the AGPL license, has good documentation, and a fairly
active support community (especially in the #gluster IRC channel). But to someone
new to distributed file systems, it can be daunting to get set it up the first time.

Configuring Gluster - Basic Overview

To get Gluster working on a basic two-server setup (so you can have one folder
synchronized and replicated across the two servers—allowing one server to go down
completely, and the other to still have access to the files), you need to do the
following:

1. Install Gluster server and client on each server, and start the server daemon.
2. (On both servers) Create a ‘brick’ directory (where Gluster will store files for a

given volume).
3. (On both servers) Create a directory to be used as a mount point (a directory
where you’ll have Gluster mount the shared volume).

4. (On both servers) Use gluster peer probe to have Gluster connect to the other
server.

5. (On one server) Use gluster volume create to create a new Gluster volume.
6. (On one server) Use gluster volume start to start the new Gluster volume.
7. (On both servers) Mount the gluster volume (adding a record to /etc/fstab to

make the mount permanent).

Additionally, you need to make sure you have the following ports open on both
servers (so Gluster can communicate): TCP ports 111, 24007-24011, 49152-49153, and
UDP port 111. For each extra server in your Gluster cluster, you need to add an
additional TCP port in the 49xxx range.

Chapter 9 - Ansible Cookbooks 249

Configuring Gluster with Ansible

For demonstration purposes, we’ll set up a simple two-server infrastructure using
Vagrant, and create a shared volume between the two, with two replicas (meaning
all files will be replicated on each server). As your infrastructure grows, you can set
other options for data consistency and transport according to your needs.

To build the two-server infrastructure locally, create a folder gluster containing the
following Vagrantfile:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure("2") do |config|

5 # Base VM OS configuration.

6 config.vm.box = "geerlingguy/ubuntu2004"

7 config.vm.synced_folder '.', '/vagrant', disabled: true

8 config.ssh.insert_key = false

9

10 config.vm.provider :virtualbox do |v|

11 v.memory = 512

12 v.cpus = 1

13 end

14

15 # Define two VMs with static private IP addresses.

16 boxes = [

17 { :name => "gluster1", :ip => "192.168.56.2" },

18 { :name => "gluster2", :ip => "192.168.56.3" }

19]

20

21 # Provision each of the VMs.

22 boxes.each do |opts|

23 config.vm.define opts[:name] do |config|

24 config.vm.hostname = opts[:name]

25 config.vm.network :private_network, ip: opts[:ip]

26

Chapter 9 - Ansible Cookbooks 250

27 # Provision both VMs using Ansible after the last VM is booted.

28 if opts[:name] == "gluster2"

29 config.vm.provision "ansible" do |ansible|

30 ansible.playbook = "playbooks/provision.yml"

31 ansible.inventory_path = "inventory"

32 ansible.limit = "all"

33 end

34 end

35 end

36 end

37

38 end

This configuration creates two servers, gluster1 and gluster2, and will run a
playbook at playbooks/provision.yml on the servers defined in an inventory file
in the same directory as the Vagrantfile.

Create the inventory file to help Ansible connect to the two servers:

1 [gluster]

2 192.168.56.2

3 192.168.56.3

4

5 [gluster:vars]

6 ansible_user=vagrant

7 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

Now, create a playbook named provision.yml inside a playbooks directory:

Chapter 9 - Ansible Cookbooks 251

1 ---

2 - hosts: gluster

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.firewall

10 - geerlingguy.glusterfs

11

12 tasks:

13 - name: Ensure Gluster brick and mount directories exist.

14 file:

15 path: "{{ item }}"

16 state: directory

17 mode: 0775

18 with_items:

19 - "{{ gluster_brick_dir }}"

20 - "{{ gluster_mount_dir }}"

21

22 - name: Configure Gluster volume.

23 gluster_volume:

24 state: present

25 name: "{{ gluster_brick_name }}"

26 brick: "{{ gluster_brick_dir }}"

27 replicas: 2

28 cluster: "{{ groups.gluster | join(',') }}"

29 host: "{{ inventory_hostname }}"

30 force: yes

31 run_once: true

32

33 - name: Ensure Gluster volume is mounted.

34 mount:

35 name: "{{ gluster_mount_dir }}"

36 src: "{{ inventory_hostname }}:/{{ gluster_brick_name }}"

Chapter 9 - Ansible Cookbooks 252

37 fstype: glusterfs

38 opts: "defaults,_netdev"

39 state: mounted

This playbook uses two roles to set up a firewall and install the required packages for
GlusterFS to work. You can manually install both of the required roles with the com-
mand ansible-galaxy role install geerlingguy.firewall geerlingguy.glusterfs,
or add them to a requirements.yml file and install with ansible-galaxy install -r

requirements.yml.

Gluster requires a ‘brick’ directory to use as a virtual filesystem, and our servers also
need a directory where the filesystem can be mounted, so the first file task ensures
both directories exist (gluster_brick_dir and gluster_mount_dir). Since we need
to use these directory paths more than once, we use variables which will be defined
later, in vars.yml.

Ansible’s gluster_volume module (added in Ansible 1.9) does all the hard work of
probing peer servers, setting up the brick as a Gluster filesystem, and configuring the
brick for replication. Some of the most important configuration parameters for the
gluster_volume module include:

• state: Setting this to present makes sure the brick is present. It will also start
the volume when it is first created by default, though this behavior can be
overridden by the start_on_create option.

• name and brick give the Gluster brick a name and location on the server,
respectively. In this example, the brick will be located on the boot volume, so
we also have to add force: yes, or Gluster will complain about not having the
brick on a separate volume.

• replicas tells Gluster how many replicas should exist; this number can vary
depending on how many servers you have in the brick’s cluster, and how
much tolerance you have for server outages. We won’t get much into tuning
GlusterFS for performance and resiliency, but most situations warrant a value
of 2 or 3.

• cluster defines all the hosts which will contain the distributed filesystem. In
this case, all the gluster servers in our Ansible inventory should be included,
so we use a Jinja join filter to join all the addresses into a list.

Chapter 9 - Ansible Cookbooks 253

• host sets the host for peer probing explicitly. If you don’t set this, you can some-
times get errors on brick creation, depending on your network configuration.

We only need to run the gluster_volume module once for all the servers, so we add
run_once: true.

The last task in the playbook uses Ansible’s mount module to ensure the Gluster
volume is mounted on each of the servers, in the gluster_mount_dir.

After the playbook is created, we need to define all the variables used in the playbook.
Create a vars.yml file inside the playbooks directory, with the following variables:

1 ---

2 # Firewall configuration.

3 firewall_allowed_tcp_ports:

4 - 22

5 # For Gluster.

6 - 111

7 # Port-mapper for Gluster 3.4+.

8 # - 2049

9 # Gluster Daemon.

10 - 24007

11 # 24009+ for Gluster <= 3.3; 49152+ for Gluster 3.4+.

12 - 24009

13 - 24010

14 - 49152

15 - 49153

16 # Gluster inline NFS server.

17 - 38465

18 - 38466

19 firewall_allowed_udp_ports:

20 - 111

21

22 # Gluster configuration.

23 gluster_mount_dir: /mnt/gluster

24 gluster_brick_dir: /srv/gluster/brick

25 gluster_brick_name: gluster

Chapter 9 - Ansible Cookbooks 254

This variables file should be pretty self-explanatory; all the ports required for Gluster
are opened in the firewall, and the three Gluster-related variables we use in the
playbook are defined.

Now that we have everything set up, the folder structure should look like this:

gluster/

playbooks/

provision.yml

main.yml

inventory

Vagrantfile

Change directory into the gluster directory, and run vagrant up. After a few
minutes, provisioning should have completed successfully. To ensure Gluster is
working properly, you can run the following two commands, which should give
information about Gluster’s peer connections and the configured gluster volume:

$ ansible gluster -i inventory -a "gluster peer status" -b

192.168.56.2 | success | rc=0 >>

Number of Peers: 1

Hostname: 192.168.56.3

Port: 24007

Uuid: 1340bcf1-1ae6-4e55-9716-2642268792a4

State: Peer in Cluster (Connected)

192.168.56.3 | success | rc=0 >>

Number of Peers: 1

Hostname: 192.168.56.2

Port: 24007

Uuid: 63d4a5c8-6b27-4747-8cc1-16af466e4e10

State: Peer in Cluster (Connected)

Chapter 9 - Ansible Cookbooks 255

$ ansible gluster -i inventory -a "gluster volume info" -b

192.168.56.3 | SUCCESS | rc=0 >>

Volume Name: gluster

Type: Replicate

Volume ID: b75e9e45-d39b-478b-a642-ccd16b7d89d8

Status: Started

Number of Bricks: 1 x 2 = 2

Transport-type: tcp

Bricks:

Brick1: 192.168.56.2:/srv/gluster/brick

Brick2: 192.168.56.3:/srv/gluster/brick

192.168.56.2 | SUCCESS | rc=0 >>

Volume Name: gluster

Type: Replicate

Volume ID: b75e9e45-d39b-478b-a642-ccd16b7d89d8

Status: Started

Number of Bricks: 1 x 2 = 2

Transport-type: tcp

Bricks:

Brick1: 192.168.56.2:/srv/gluster/brick

Brick2: 192.168.56.3:/srv/gluster/brick

You can also do the following to confirm that files are being replicated/distributed
correctly:

1. Log into the first server: vagrant ssh gluster1

2. Create a file in the mounted gluster volume: sudo touch /mnt/gluster/test

3. Log out of the first server: exit
4. Log into the second server: vagrant ssh gluster2

5. List the contents of the gluster directory: ls /mnt/gluster

You should see the test file you created in step 2; this means Gluster is working
correctly!

Chapter 9 - Ansible Cookbooks 256

Summary

Deploying distributed file systems like Gluster can seem challenging, but Ansible
simplifies the process, and more importantly, does so idempotently; each time you
run the playbook again, it will ensure everything stays configured as you’ve set it.

This example Gluster configuration can be found in its entirety on GitHub, in the
Gluster example¹⁰⁷ directory.

Mac Provisioning with Ansible and Homebrew

The next example will be specific to the Mac, but the principle behind it applies
universally. How many times have you wanted to hit the ‘reset’ button on your day-
to-day workstation or personal computer? Howmuch time do you spend automating
configuration and testing of applications and infrastructure at your day job, and how
little do you spend automating your own local environment?

Over the past few years, as I’ve gone through four Macs (one personal, three
employer-provided), I decided to start fresh on each new Mac (rather than transfer
all my cruft from my old Mac to my new Mac through Apple’s Migration Assistant).
I had a problem, though; I had to spend at least 4-6 hours on each Mac, downloading,
installing, and configuring everything. And I had another problem—since I actively
used at least two separateMacs, I had to manually install and configure new software
on both Macs whenever I wanted to try a new tool.

To restore order to this madness, I wrapped up all the configuration I could into a set
of dotfiles¹⁰⁸ and used git to synchronize the dotfiles to all my workstations.

However, even with the assistance of Homebrew¹⁰⁹, an excellent package manager
for macOS, there was still a lot of manual labor involved in installing and configuring
my favorite apps and command line tools.

¹⁰⁷https://github.com/geerlingguy/ansible-for-devops/tree/master/gluster
¹⁰⁸https://github.com/geerlingguy/dotfiles
¹⁰⁹http://brew.sh/

https://github.com/geerlingguy/ansible-for-devops/tree/master/gluster
https://github.com/geerlingguy/dotfiles
http://brew.sh/
https://github.com/geerlingguy/ansible-for-devops/tree/master/gluster
https://github.com/geerlingguy/dotfiles
http://brew.sh/

Chapter 9 - Ansible Cookbooks 257

Running Ansible playbooks locally

We saw examples of running playbooks with connection: local earlier while
provisioning virtual machines in the cloud through our local workstation. But in
fact, you can perform any Ansible task using a local connection. This is how we will
configure our local workstation, using Ansible.

I usually begin building a playbook by adding the basic scaffolding first, then filling
in details as I go. You can follow along by creating the playbook main.yml with:

1 ---

2 - hosts: localhost

3 user: jgeerling

4 connection: local

5

6 vars_files:

7 - vars/main.yml

8

9 roles: []

10

11 tasks: []

We’ll store any variables we need in the included vars/main.yml file. The user is set
to my local user account (in this case, jgeerling), so file permissions are set for my
account, and tasks are run under my own account in order to minimize surprises.

If certain tasks need to be run with sudo privileges, you can add become:

yes to the task, and either run the playbook with --ask-sudo-pass (in
which case, Ansible will prompt you for your sudo password before
running the playbook) or run the playbook normally, and wait for Ansible
to prompt you for your sudo password.

Automating Homebrew package and app management

Since I use Homebrew (billed as “the missing package manager for macOS”) for most
ofmy application installation and configuration, I created the role geerlingguy.homebrew,

Chapter 9 - Ansible Cookbooks 258

which first installs Homebrew and then installs all the applications and packages I
configure in a few simple variables.

The next step, then, is to add the Homebrew role and configure the required variables.
Inside main.yml, update the roles section:

9 roles:

10 - geerlingguy.homebrew

Then add the following into vars/main.yml:

1 ---

2 homebrew_installed_packages:

3 - sqlite

4 - mysql

5 - php

6 - python

7 - ssh-copy-id

8 - cowsay

9 - pv

10 - wget

11 - brew-cask

12

13 homebrew_taps:

14 - homebrew/core

15 - homebrew/cask

16

17 homebrew_cask_appdir: /Applications

18 homebrew_cask_apps:

19 - docker

20 - google-chrome

21 - sequel-pro

22 - slack

Homebrew has a few tricks up its sleeve, like being able to manage general packages
like PHP, MySQL, Python, Pipe Viewer, etc. natively (using commands like brew

Chapter 9 - Ansible Cookbooks 259

install [package] and brew uninstall package), and can also install and manage
general application installation for many Mac apps, like Chrome, Firefox, VLC, etc.
using brew cask.

To anyone who’s set up a new Mac the old-fashioned way—download 15 .dmg files,
mount them, drag the applications to the Applications folder, eject them, delete
the .dmg files—Homebrew’s simplicity and speed are a true godsend. This Ansible
playbook has so far automated that process completely, so you don’t even have to run
the Homebrew commands manually! The geerlingguy.homebrew role uses Ansible’s
built-in homebrew module to manage package installation, along with some custom
tasks to manage cask applications.

Configuring macOS through dotfiles

Just like there’s a homebrew role on Ansible Galaxy, made for configuring and
installing packages via Homebrew, there’s a dotfiles role you can use to download
and configure your local dotfiles.

Dotfiles are named as such because they are files in your home directory
that begin with a .. Many programs and shell environments read local
configuration from dotfiles, so dotfiles are a simple, efficient, and easily-
synchronized method of customizing your development environment for
maximum efficiency.

In this example, we’ll use the author’s dotfiles, but you can tell the role to use
whatever set of dotfiles you want.

Add another role to the roles list:

9 roles:

10 - geerlingguy.homebrew

11 - geerlingguy.dotfiles

Then, add the following three variables to your vars/main.yml file:

Chapter 9 - Ansible Cookbooks 260

2 dotfiles_repo: https://github.com/geerlingguy/dotfiles.git

3 dotfiles_repo_local_destination: ~/repositories/dotfiles

4 dotfiles_files:

5 - .bash_profile

6 - .gitignore

7 - .inputrc

8 - .osx

9 - .vimrc

The first variable gives the git repository URL for the dotfiles to be cloned. The second
gives a local path for the repository to be stored, and the final variable tells the role
which dotfiles it should use from the specified repository.

The dotfiles role clones the specified dotfiles repository locally, then symlinks every
one of the dotfiles specified in dotfiles_files into your home folder (removing any
existing dotfiles of the same name).

If you want to run the .osx dotfile, which adjusts many system and application
settings, add in a new task under the tasks section in the main playbook:

13 tasks:

14 - name: Run .osx dotfiles.

15 shell: ~/.osx --no-restart

16 changed_when: false

In this case, the .osx dotfile allows a --no-restart flag to be passed to prevent the
script from restarting certain apps and services including Terminal—which is good,
since you’d likely be running the playbook from within Terminal.

At this point, you already have the majority of your local environment set up.
Copying additional settings and tweaking things further is an exercise in adjusting
your dotfiles or including another playbook that copies or links preference files into
the right places.

I’m constantly tweaking my own development workstation, and for the most part,
all my configuration is wrapped up in my Mac Development Ansible Playbook¹¹⁰,
available on GitHub. I’d encourage you to fork that project, as well as my dotfiles, if

¹¹⁰https://github.com/geerlingguy/mac-dev-playbook

https://github.com/geerlingguy/mac-dev-playbook
https://github.com/geerlingguy/mac-dev-playbook

Chapter 9 - Ansible Cookbooks 261

you’d like to get started automating the build of your own development workstation.
Even if you don’t use aMac, most of the structure is similar; just substitute a different
package manager, and start automating!

Summary

Ansible is the best way to automate infrastructure provisioning and configuration.
Ansible can also be used to configure your own workstation, saving you the time and
frustration it takes to do so yourself. Unfortunately, you can’t yet provision yourself
a new top-of-the-line workstation with Ansible!

You can find the full playbook I’m currently using to configure my Macs on GitHub:
Mac Development Ansible Playbook¹¹¹.

/ Do or do not. There is no try. \

\ (Yoda) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

¹¹¹https://github.com/geerlingguy/mac-dev-playbook

https://github.com/geerlingguy/mac-dev-playbook
https://github.com/geerlingguy/mac-dev-playbook

Chapter 10 - Deployments with
Ansible
Deploying application code to servers is one of the hardest, but most rewarding,
tasks of any development team. Most shops using traditional deployment techniques
(manual steps, shell scripts, and prayers) dread deployments, especially for complex,
monolithic apps.

Deployments are less daunting when you adopt modern deployment processes and
use the right amount of automation. In the best case, deployments become so boring
and routine they barely register as a blip on your team’s radar.

Consider Etsy, a company whose engineers are deploying code to production up
to 40 times per day¹¹², with no manual intervention from the operations team. The
operations team is free to work on more creative endeavors, and the developers see
their code go live in near-real-time!

Etsy’s production deployment schedule is enabled by a strong DevOps-oriented
culture (with robust code repository management, continuous integration, well-
tested code, feature flags, etc.). While it may not be immediately possible to start
deploying your application to production 20 times a day, you can move a long way
towards effortless deployments by automating deployments with Ansible.

Deployment strategies

There are dozens of ways to deploy code to servers. For the most basic applications,
you may only need to switch to a new tag in a code repository on the server and
restarting a service.

For more complex applications, you might do a full Blue-Green deployment, where
you build an entire new infrastructure alongside your current production infrastruc-
ture, run tests on the new infrastructure, then automatically cut over to the new

¹¹²http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy

http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy
http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy
http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy

Chapter 10 - Deployments with Ansible 263

instances. This may be overkill for many applications (especially if <100% uptime is
acceptable), but it is becoming more and more common—and Ansible automates the
entire process.

In this chapter, we will be covering the following deployment strategies:

1. Single-server deployments.
2. Zero-downtime multi-server deployments.
3. Capistrano-style and blue-green deployments.

These are three of the most common deployment techniques, and they cover many
common use cases. There are other ways to strengthen your deployment processes,
often involving application-level and organizational change, but those deployment
aspects are out of the scope of this book.

Simple single-server deployments

The vast majority of small applications and websites are easily run on a single
virtual machine or dedicated server. Using Ansible to provision and manage the
configuration on the server is a no-brainer. Even though you only have to manage
one server, it’s better to encapsulate all the setup so you don’t end upwith a snowflake
server.

In this instance, we are managing a Ruby on Rails site that allows users to perform
CRUD operations on articles (database records with a title and body).

The code repository for this app is located on GitHub in the demo-rails-app reposi-
tory¹¹³.

Begin by creating a new Vagrant VM for local testing using the following Vagrantfile:

¹¹³https://github.com/geerlingguy/demo-rails-app

https://github.com/geerlingguy/demo-rails-app
https://github.com/geerlingguy/demo-rails-app
https://github.com/geerlingguy/demo-rails-app

Chapter 10 - Deployments with Ansible 264

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure(2) do |config|

5 config.vm.box = "geerlingguy/ubuntu2004"

6 config.vm.synced_folder '.', '/vagrant', disabled: true

7 config.ssh.insert_key = false

8

9 config.vm.provider "virtualbox" do |v|

10 v.name = "rails-demo"

11 v.memory = 1024

12 v.cpus = 2

13 end

14

15 config.vm.hostname = "rails-demo"

16 config.vm.network :private_network, ip: "192.168.56.7"

17

18 config.vm.provision "ansible" do |ansible|

19 ansible.playbook = "playbooks/main.yml"

20 ansible.become = true

21 end

22

23 end

In this case, we have a VM at the IP address 192.168.56.7. When provisioned, it will
run the Ansible playbook defined in playbooks/main.yml on the VM.

Provisioning a Ruby on Rails server

To prepare for our application deployment, we need to do the following:

1. Install git (our application is version controlled in a git repository).
2. Install Node.js (asset compilation requires its Javascript runtime).
3. Install Ruby (our application requires version 2.6.0 or later).
4. Install Passenger with Nginx (we need a fast web server to run our rails

application).

Chapter 10 - Deployments with Ansible 265

5. Install any other dependencies, and prepare the server for deployment.

Let’s create a new playbook just for the provisioning tasks (we’ll worry about
deployment later), in a new file, playbooks/provision.yml:

1 ---

2 - hosts: all

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.git

10 - geerlingguy.nodejs

11 - geerlingguy.ruby

12 - geerlingguy.passenger

13

14 tasks:

15 - name: Install app dependencies.

16 apt:

17 name:

18 - libsqlite3-dev

19 - libreadline-dev

20 - tzdata

21 state: present

22

23 - name: Ensure app directory exists and is writeable.

24 file:

25 path: "{{ app_directory }}"

26 state: directory

27 owner: "{{ app_user }}"

28 group: "{{ app_user }}"

29 mode: 0755

This is a straightforward playbook. We’ll need to define a few variables to make sure

Chapter 10 - Deployments with Ansible 266

the geerlingguy.ruby role installs the correct version of Ruby (at least 2.6.0), and the
geerlingguy.passenger role is configured to serve our app correctly.

There are also a few other variables we will need, like app_directory and app_user,
so let’s create the variables file now, at playbooks/vars.yml:

1 # Variables for our app.

2 app_directory: /opt/demo-rails-app

3 app_user: www-data

4

5 # Variables for Passenger and Nginx.

6 passenger_server_name: 0.0.0.0

7 passenger_app_root: /opt/demo-rails-app/public

8 passenger_app_env: production

9 passenger_ruby: /usr/local/bin/ruby

10

11 # Variables for Ruby installation.

12 ruby_install_from_source: true

13 ruby_download_url: https://cache.ruby-lang.org/pub/ruby/2.7/ruby-2.7.6.\

14 tar.gz

15 ruby_version: 2.7.6

The passenger variables tell Passenger to run a server available on every network in-
terface, and to launch our app (whichwill be located in /opt/demo-rails-app/public)
with production settings (the app’s environment), using the ruby binary we have
installed in /usr/local/bin/ruby.

The Ruby variables tell the ruby role to install Ruby 2.6.0 from source, since the
packages available through Ubuntu’s standard apt repositories only contain older
versions.

The playbook specified in our Vagrantfile, playbooks/main.yml, doesn’t yet exist.
Let’s create the playbook and include the above provision.yml playbook so our
server will be provisioned successfully. We’ll separate out the deployment steps into
another playbook and include that separately. Inside playbooks/main.yml:

Chapter 10 - Deployments with Ansible 267

1 ---

2 - import_playbook: provision.yml

Deploying a Rails app to the server

All the dependencies for our app’s deployment were configured in provision.yml,
so we’re ready to build a playbook to perform all the deployment tasks.

Add a line to the main.yml file to include a new deploy.yml playbook:

1 ---

2 - import_playbook: provision.yml

3 - import_playbook: deploy.yml

Now we’re ready to create the deploy.yml playbook, which will do the following:

1. Use git to check out the latest production release of the Rails app.
2. Copy over a secrets.yml template with secure app data required for running

the app.
3. Make sure all the gems required for the app are installed (via Bundler).
4. Create the database (if it doesn’t already exist).
5. Run rake tasks to make sure the database schema is up-to-date and all assets
(like JS and CSS) are compiled.

6. Make sure the app files’ ownership is set correctly so Passenger and Nginx serve
them without error.

7. If any changes or updates were made, restart Passenger and Nginx.

Most of these tasks will use Ansible’s modules, but for a few, we’ll just wrap the
normal deployment-related commands in command since there aren’t pre-existing
modules to take care of them for us:

Chapter 10 - Deployments with Ansible 268

1 ---

2 - hosts: all

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.passenger

10

11 tasks:

12 - name: Ensure demo application is at correct release.

13 git:

14 repo: https://github.com/geerlingguy/demo-rails-app.git

15 version: "{{ app_version }}"

16 dest: "{{ app_directory }}"

17 accept_hostkey: true

18 force: true

19 register: app_updated

20 notify: restart nginx

21 become: true

22 become_user: "{{ app_user }}"

23

24 - name: Ensure secrets file is present.

25 template:

26 src: templates/secrets.yml.j2

27 dest: "{{ app_directory }}/config/secrets.yml"

28 owner: "{{ app_user }}"

29 group: "{{ app_user }}"

30 mode: 0664

31 notify: restart nginx

32

33 - name: Install required dependencies with bundler.

34 command: "bundle install --path vendor/bundle \

35 chdir={{ app_directory }}"

36 when: app_updated.changed == true

Chapter 10 - Deployments with Ansible 269

37 notify: restart nginx

38

39 - name: Check if database exists.

40 stat: "path={{ app_directory }}/db/{{ app_environment.\

41 RAILS_ENV }}.sqlite3"

42 register: app_db_exists

43

44 - name: Create database.

45 command: "bundle exec rake db:create chdir={{ app_directory }}"

46 when: app_db_exists.stat.exists == false

47 notify: restart nginx

48

49 - name: Perform deployment-related rake tasks.

50 command: "{{ item }} chdir={{ app_directory }}"

51 with_items:

52 - bundle exec rake db:migrate

53 - bundle exec rake assets:precompile

54 environment: "{{ app_environment }}"

55 when: app_updated.changed == true

56 notify: restart nginx

57

58 - name: Ensure demo application has correct user for files.

59 file:

60 path: "{{ app_directory }}"

61 state: directory

62 owner: "{{ app_user }}"

63 group: "{{ app_user }}"

64 recurse: yes

65 notify: restart nginx

The first thing you’ll notice (besides the fact we’ve included the vars.yml file
again, since we need those variables in this playbook as well) is we’ve added
the geerlingguy.passenger role in this playbook. Since we’ll be using one of the
handlers defined in that role (restart nginx), we need to include the role explicitly.
We could’ve added a separate handler specific to this playbook, but using a role’s
handlers usually makes maintenance easier.

Chapter 10 - Deployments with Ansible 270

Let’s walk through the tasks, one-by-one:

1. (Lines 12-22) We put all the application files in place by checking out the git
repository at the version app_version into the directory app_directory. We set
accept_hostkey to true so this task doesn’t hang the first time we deploy the
app (since we haven’t yet accepted the Git server’s hostkey). We also become the
app_user so the directory will have the proper ownership and file permissions.

2. (Lines 24-31) We copy a secrets.yml file to the application’s configuration
directory. There are different ways to deploy app secrets, but this is the easiest,
and allows us to store the app secrets in an Ansible Vault-protected vars file if
we so desire.

3. (Lines 33-36) If the app_updated variable shows a change occurred as part of
the first git task, we’ll run a bundler command to ensure all the latest bundled
dependencies are installed in the vendor/bundle directory.

4. (Lines 38-45) Create the application database with rake db:create if it doesn’t
already exist. Since this application uses a SQLite database, it’s a matter of
checking if the .sqlite3 file exists, and if not, running the db:create task.

5. (Lines 47-54) If the app_updated variable shows a change occurred as part of
the first git task, we’ll also run a couple rake tasks to make sure the database
schema is up to date, and all assets (like scripts and stylesheets) are compiled.

6. (Lines 56-63) Make sure all app files have the correct permissions for Passen-
ger/Nginx to serve them correctly.

Becausemany of the tasks result in filesystem changes that could change the behavior
of the application, they all notify the restart nginx handler provided by the
geerlingguy.passenger role, so Passenger reloads the configuration and restarts the
app.

There are a few new variables we need to add to vars.yml, and we also need to add
the secrets.yml.j2 template mentioned in the task that copies it into place.

First, we’ll create the secrets file, inside playbooks/templates/secrets.yml.j2:

Chapter 10 - Deployments with Ansible 271

1 development:

2 secret_key_base: {{ app_secrets.dev }}

3

4 test:

5 secret_key_base: {{ app_secrets.test }}

6

7 production:

8 secret_key_base: {{ app_secrets.prod }}

We’ll be using a dictionary variable for app_secrets, so let’s add it and all the other
new variables to playbooks/vars.yml:

1 ---

2 # Variables for our app.

3 app_version: 2.0.1

4 app_directory: /opt/demo-rails-app

5 app_user: www-data

6 app_secrets:

7 dev: fe562ec1e21eecc5af4d83f6a157a7

8 test: 4408f36dd290766d2f368fdfcedf4d

9 prod: 9bf801da1a24c9a103ea86a1438caa

10 app_environment:

11 RAILS_ENV: production

12

13 # Variables for Passenger and Nginx.

14 passenger_server_name: 0.0.0.0

15 passenger_app_root: /opt/demo-rails-app/public

16 passenger_app_env: production

17 passenger_ruby: /usr/local/bin/ruby

18

19 # Variables for Ruby installation.

20 ruby_install_from_source: true

21 ruby_download_url: https://cache.ruby-lang.org/pub/ruby/2.7/ruby-2.7.6.\

22 tar.gz

23 ruby_version: 2.7.6

Chapter 10 - Deployments with Ansible 272

Note the addition of the following variables to support our deploy.yml playbook:

• app_version: This is the git tag, branch, or commit hash to be deployed to the
server.

• app_secrets: A dictionary of Rails app secrets, which are used to verify the
integrity of signed app cookies. You can generate new, unique strings for these
variables using rake secret.

• app_environment: Environment settings required for certain commands (like
bundle exec and rake) to run with the correct Rails application environment.

Provisioning and Deploying the Rails App

Since we now have our provision.yml and deploy.yml playbooks completed, and
both are included in the main.yml playbook Vagrant will run, it’s time to bring up
the new VM using Vagrant, and see if our application works!

The structure of your project folder should look like this:

deployments/

playbooks/

templates/

secrets.yml.j2

deploy.yml

main.yml

provision.yml

vars.yml

Vagrantfile

Before running the playbook, we need to make sure all the role dependencies are
present. If you were building everything from scratch, you might have a roles

directory with all the roles inside, but in this case, since we’re using roles from
Ansible Galaxy, it’s best to not include the role files directly with our playbook, but
instead, add a requirements.yml file to the project and install the roles automatically
with Galaxy.

Inside requirements.yml:

Chapter 10 - Deployments with Ansible 273

1 ---

2 roles:

3 - name: geerlingguy.git

4 - name: geerlingguy.ruby

5 - name: geerlingguy.nodejs

6 - name: geerlingguy.passenger

In the same directory as the requirements file, run the command $ ansible-galaxy

install -r requirements.yml, and after a minute, all the required roles will be
downloaded to your default Ansible roles directory, if they’re not already present.

Change directory back to the main directory containing the Vagrantfile, and run
vagrant up. Assuming everything runs correctly, you should see the playbook
complete successfully after a few minutes:

TASK [Ensure demo application has correct user for files.] **********

changed: [default]

RUNNING HANDLER [geerlingguy.passenger : restart nginx] *************

changed: [default]

PLAY RECAP **

default : ok=55 changed=31 unreachable=0 failed=0

Now, jump over to a web browser and load http://192.168.56.7/. You should see
something like the following:

Demonstration Rails app running successfully.

Chapter 10 - Deployments with Ansible 274

Try creating, updating, and deleting a few articles to make sure the database and all
app functionality is working correctly:

A Rails app to perform CRUD operations on Articles.

The app seems to function perfectly, but it could use some improvements. After
more development work, we have a new version of to deploy. We could update
the app_version variable in vars.yml and run vagrant provision to run the entire
provisioning and deployment playbook again, but to save time using our flexible
playbook layout (with separate provisioning and deployment playbooks), we can
run the deploy.yml playbook separately.

Deploying application updates

First, to test deployment without provisioning, we need to create an inventory file to
tell Ansible how to connect directly to the Vagrant-managed VM.

Create the file playbooks/inventory-ansible with the following contents:

Chapter 10 - Deployments with Ansible 275

1 [rails]

2 192.168.56.7

3

4 [rails:vars]

5 ansible_user=vagrant

6 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

If you were creating this playbook for a server or VM running outside of
Vagrant’s control, you’d probably have already created an inventory file
or added the server to your global inventory, but when we’re working
with Vagrant, it’s often convenient to use Vagrant’s own dynamically-
managed inventory. Running playbooks outside of Vagrant’s up/provision
functionality requires us to create a separate inventory file.

Test the ability to run the deploy.yml playbook by running the following command
inside the playbooks directory:

$ ansible-playbook deploy.yml -i inventory-ansible

Hopefully the playbook completed its run successfully. It may have reported a change
in the “Ensure demo application has correct user for files” task, and if so, it will have
restarted Passenger. Run it again, and ansible should report no changes:

PLAY RECAP **

192.168.56.7 : ok=18 changed=0 unreachable=0 failed=0

Hopefully you’ve noticed running the deploy.yml playbook standalone is much
faster than running the provision and deploy playbooks together (deployment only
takes 18 tasks, while both playbooks add up to 80+ tasks!). In the future, we can
deploy application updates using only the deploy.yml playbook and changing the
app_version either in vars.yml or by specifying the version on the command line in
the ansible-playbook command.

Chapter 10 - Deployments with Ansible 276

It’s generally preferred to change variables in vars files that are versioned
with your playbooks, rather than specify them through inventory files,
environment variables, or on the command line. This way the entire state
of your infrastructure is encapsulated in your playbook files, which ideally
should be version controlled and managed similarly to the application they
deploy. Plus, who wants to enter any more information on the command
line than is absolutely required?

Our application is a fairly generic web application with updates to application
code (which require a web server reload), styles (which need recompiling), and
possibly the database schema (which needs rake migrate tasks to be run). Any
time app_version is changed inside playbooks/vars.yml, the deploy playbook will
automatically run all the required tasks to get our app running with the latest code.

Update app_version to 2.1.0, and then run the following command again:

$ ansible-playbook deploy.yml -i inventory-ansible

After a minute or so, the deployment should complete. Once complete, you’ll see the
new-and-improved version of the Demonstration Ruby on Rails Application:

Rails app - version 2.1.0 with a fancy header.

Chapter 10 - Deployments with Ansible 277

Application update deployments involve incrementing the app_version to the latest
git tag, then running the deploy.yml playbook again. The main.yml playbook can
be run to ensure the entire server stack is in the correct state, but it’s faster to just
deploy the app updates.

Code for this entire example is available on GitHub in the Ansible for
DevOps deployments example¹¹⁴.

Zero-downtime multi-server deployments

If you need to run an application on multiple servers for horizontal scalability or re-
dundancy, deployments can be cumbersome, resulting in downtime and complicated
deployment processes—but not when you use Ansible!

Server Check.in¹¹⁵ was a server and website monitoring service with a microservices-
based architecture I ran for over a decade; there was a website, an API application,
and a server checking application.

The server checking application had to run on a variety of servers hosted around the
world by different providers to provide redundancy and reliability. Server Check.in
used Ansible to manage rolling deployments for this application, so new code was
deployed across all the servers in minutes while maintaining 100% uptime!

We’ll emulate part of Server Check.in’s infrastructure (the check server application)
by deploying and updating a small Node.js application to a set of virtual machines.
The code repository for this app is located on GitHub in the demo-nodejs-api
repository¹¹⁶. Here’s a diagram of the infrastructure we’ll be building:

¹¹⁴https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments
¹¹⁵https://servercheck.in/
¹¹⁶https://github.com/geerlingguy/demo-nodejs-api

https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments
https://servercheck.in/
https://github.com/geerlingguy/demo-nodejs-api
https://github.com/geerlingguy/demo-nodejs-api
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments
https://servercheck.in/
https://github.com/geerlingguy/demo-nodejs-api

Chapter 10 - Deployments with Ansible 278

Four servers connected to the Internet.

To begin, create four lightweight Vagrant VMs using the following Vagrantfile:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure("2") do |config|

5 # Base VM OS configuration.

6 config.vm.box = "geerlingguy/ubuntu2004"

7 config.vm.synced_folder '.', '/vagrant', disabled: true

8 config.ssh.insert_key = false

9

10 config.vm.provider :virtualbox do |v|

11 v.memory = 512

12 v.cpus = 1

13 v.linked_clone = true

14 end

15

16 # Define four VMs with static private IP addresses.

17 boxes = [

18 { :name => "nodejs1", :ip => "192.168.56.2" },

19 { :name => "nodejs2", :ip => "192.168.56.3" },

20 { :name => "nodejs3", :ip => "192.168.56.4" },

21 { :name => "nodejs4", :ip => "192.168.56.5" }

Chapter 10 - Deployments with Ansible 279

22]

23

24 # Provision each of the VMs.

25 boxes.each do |opts|

26 config.vm.define opts[:name] do |config|

27 config.vm.hostname = opts[:name]

28 config.vm.network :private_network, ip: opts[:ip]

29

30 # Provision all the VMs using Ansible after last VM is up.

31 if opts[:name] == "nodejs4"

32 config.vm.provision "ansible" do |ansible|

33 ansible.playbook = "playbooks/main.yml"

34 ansible.inventory_path = "inventory"

35 ansible.limit = "all"

36 end

37 end

38 end

39 end

40

41 end

The above Vagrantfile defines four VMs with 512MB of RAM and a unique
hostname and IP address (defined by the boxes variable). Our Node.js app doesn’t
require much in the way of processing power or memory.

In the provision section of the playbook, we told Vagrant to provision all the VMs
withAnsible, using the inventory file inventory, and the playbook playbooks/main.yml.
Create these two files in the same folder as your Vagrantfile:

deployments-rolling/

playbooks/

main.yml

inventory

Vagrantfile

Inside the inventory file, we just need to define a list of all the Node.js API app VMs
by IP address:

Chapter 10 - Deployments with Ansible 280

1 [nodejs-api]

2 192.168.56.2

3 192.168.56.3

4 192.168.56.4

5 192.168.56.5

6

7 [nodejs-api:vars]

8 ansible_user=vagrant

9 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

Inside the main.yml playbook, we’ll call out two separate playbooks—one for the
initial provisioning (installing Node.js and making sure the server is configured
correctly), and another for deployment (ensuring our Node.js API app is present and
running):

1 ---

2 - import_playbook: provision.yml

3 - import_playbook: deploy.yml

Go ahead and create the provision.yml and deploy.yml playbooks, starting with
provision.yml:

1 ---

2 - hosts: nodejs-api

3 become: yes

4

5 vars:

6 nodejs_install_npm_user: root

7 npm_config_prefix: "/usr"

8 nodejs_npm_global_packages:

9 - forever

10 firewall_allowed_tcp_ports:

11 - "22"

12 - "8080"

13

Chapter 10 - Deployments with Ansible 281

14 pre_tasks:

15 - name: Update apt cache if needed.

16 apt: update_cache=yes cache_valid_time=3600

17

18 roles:

19 - geerlingguy.firewall

20 - geerlingguy.nodejs

21 - geerlingguy.git

This playbook runs on all the servers defined in our inventory file, and runs three
roles on the servers: geerlingguy.firewall (which installs and configures a firewall,
in this case opening ports 22 for SSH and 8080 for our app), geerlingguy.nodejs
(which installs Node.js, NPM, and the forever package (installed globally), which
we’ll use to run our app as a daemon), and geerlingguy.git (which installs git,
used for app deployment).

Since we’re using two roles from Ansible Galaxy, it’s best practice to also include
those roles in a requirements file so CI tools and others using this playbook can
install all the required roles.

Create a requirements.yml file in the root folder and add the following:

1 ---

2 roles:

3 - name: geerlingguy.firewall

4 - name: geerlingguy.nodejs

5 - name: geerlingguy.git

Whenever someone wants to run the playbook, the command ansible-galaxy

install -r requirements.yml will install all the required roles.

At this point, your project directory should be structured like the following:

Chapter 10 - Deployments with Ansible 282

deployments-rolling/

playbooks/

deploy.yml

main.yml

provision.yml

inventory

requirements.yml

Vagrantfile

Before we run vagrant up and see our infrastructure in action, we need to build out
the deploy.yml playbook, which will ensure our app is present and running correctly
on all the servers.

Inside deploy.yml, add the following:

1 ---

2 - hosts: nodejs-api

3 gather_facts: no

4 become: yes

5

6 vars_files:

7 - vars.yml

Use become, and set gather_facts to no to save a little time during deployments, since
our app doesn’t require any of the gathered system facts to run.

Since we have a few variables to define, and we’d like to track them separately for
easier file revision history, we’ll define the variables in a vars.yml file in the same
directory as the deploy.yml playbook:

1 ---

2 app_repository: https://github.com/geerlingguy/demo-nodejs-api.git

3 app_version: "2.0.0"

4 app_directory: /opt/demo-nodejs-api

Once you’ve saved the vars.yml file, continue building out deploy.yml, starting with
a task to clone the app’s repository (which we just defined in vars.yml):

Chapter 10 - Deployments with Ansible 283

9 tasks:

10 - name: Ensure Node.js API app is present.

11 git:

12 repo: "{{ app_repository }}"

13 version: "{{ app_version }}"

14 dest: "{{ app_directory }}"

15 accept_hostkey: true

16 register: app_updated

17 notify: restart forever apps

Using variables for the gitmodule’s repo and version affords flexibility; app version
changes might happen frequently, and it’s easier to manage them in a separate
vars.yml file.

We also want to notify a restart forever apps handler whenever the codebase is
changed. We’ll define the restart forever apps handler later in the playbook.

18 - name: Stop all running instances of the app.

19 command: "forever stopall"

20 when: app_updated.changed

21

22 - name: Ensure Node.js API app dependencies are present.

23 npm: "path={{ app_directory }}"

24 when: app_updated.changed

25

26 - name: Run Node.js API app tests.

27 command: "npm test chdir={{ app_directory }}"

28 when: app_updated.changed

Once the app is present on the server, we need to use npm to install dependencies
(using Ansible’s npm module), then run the app’s test suite using npm test. To
save time, we only stop the application, update dependencies, and run tests if
the application has changed (using the app_updated variable we registered when
checking out the application code).

Running the tests for the app during every deployment ensures the app is present
and in a functioning state. Having a thorough unit and integration test suite running

Chapter 10 - Deployments with Ansible 284

on every deployment is prerequisite to a frequent or continuously-integrated project!
Running the tests during deployments also enables zero-downtime deployments, as
we’ll see later.

25 - name: Get list of all running Node.js apps.

26 command: forever list

27 register: forever_list

28 changed_when: false

29

30 - name: Ensure Node.js API app is started.

31 command: "forever start {{ app_directory }}/app.js"

32 when: "forever_list.stdout.find('app.js') == -1"

Once the app is present and running correctly, we need to make sure it’s started.
There’s a command to get the list of all running apps (using forever), then a
command to start the app if it’s not already running.

34 - name: Add cron entry to start Node.js API app on reboot.

35 cron:

36 name: "Start Node.js API app"

37 special_time: reboot

38 job: "forever start {{ app_directory }}/app.js"

The final task adds a cron job to make sure the app is started after the server reboots.
Since we’re managing the deamonization of our app using forever instead of the
OS’s init system, it’s best to make sure the app starts on system boot using a reboot
cron job.

Remember when we added the line notify: restart forever apps to the task that
ensured the app was present on the server? It’s time to define this handler, which
runs the command forever restartall (which does exactly what it says):

Chapter 10 - Deployments with Ansible 285

40 handlers:

41 - name: restart forever apps

42 command: "forever restartall"

At this point, the Ansible playbooks and Vagrant configuration should be complete.
The playbook will clone the demo-nodejs-api project, run its tests to make sure
everything’s working correctly, then start the app using forever and make sure it’s
started whenever the server reboots.

Run the command below to test all the new servers and make sure the app is running
correctly:

$ for i in {2..5}; \

do curl -w "\n" "http://192.168.56.$i:8080/hello/john"; \

done

If all the servers are online, you should see the text "hello john" repeated four times
(once for each server):

"hello john"

"hello john"

"hello john"

"hello john"

Run vagrant provision to run the entire provisioning and deployment process again,
or just run ansible-playbook -i inventory playbooks/deploy.yml to run the
deployment playbook again. In either case, you should see no changes, and Ansible
should verify everything is ok.

You now have a fleet of Node.js API servers similar to Server Check.in’s server
checking infrastructure—except it doesn’t do much yet! Luckily, the project has seen
some new feature development since the initial 2.0.0 version you just deployed. We
now need a way to get the new version deployed to and running on all the servers
while maintaining 100% uptime for the API as a whole.

Chapter 10 - Deployments with Ansible 286

Ensuring zero downtime with serial and integration
tests

Now, after a little extra time in development, we have new features to deploy in a
2.0.1 version. You could run the exact same ansible-playbook command as above,
adding in --extra-vars "app_version=2.0.1", but best practice is to update the
variable in your included variables file, since that change is tracked in version control
and used for automated deployments.

Change the app_version in playbooks/vars.yml to 2.0.1, and run the deployment
playbook again:

ansible-playbook -i inventory playbooks/deploy.yml

Uh oh—after we deployed the new version, our tests started failing! Since we
deployed to all four servers asynchronously, all four application servers are offline,
and our boss and customers are going to be very angry.

In this case, rolling back is simple: revert to 2.0.0 and redeploy. Doing this now
fixes the problem this time, but if part of the application update changed a database
schema you could be in a world of hurt!

Ansible has two particular settings to protect you when you deploy to many servers
while maintaining your infrastructure’s overall integrity during a failed deployment.

Open the deployment playbook (playbooks/deploy.yml) and modify the initial
settings to match the following:

1 ---

2 - hosts: nodejs-api

3 gather_facts: no

4 become: yes

5 serial: 2

Note the addition of serial: 2. This tells Ansible to run the entire playbook on two
servers at a time. If you update app_version to 2.0.1 again, and run the playbook,
you should see it run on two of the four servers, and once it hits the test failure, the

Chapter 10 - Deployments with Ansible 287

playbook execution will stop—leaving your other two servers up (and saving you a
few hours on a conference bridge explaining the outage).

You could again revert back to 2.0.0, but in the time you were deploying the failed
version, developers finished a new version that got all tests passing again, 2.0.2. Go
ahead and update app_version and run the playbook again.

PLAY RECAP **

192.168.56.2 : ok=8 changed=5 unreachable=0 failed=0

192.168.56.3 : ok=8 changed=5 unreachable=0 failed=0

192.168.56.4 : ok=8 changed=5 unreachable=0 failed=0

192.168.56.5 : ok=8 changed=5 unreachable=0 failed=0

Whew! Everything is back online and operational, and all tests are passing with the
latest version of the application.

Tests should rarely fail only on production. But there are many times where
networking issues or even latency in third party services causes a random
failure or two. Whenever you move beyond one server (usually to provide
both redundancy and capacity), you will run into these transient issues. It’s
best to account for them in your automated deployment process by tuning
serial and similar settings well.

Ansible exposes two different settings for controlling rolling deployment failure
scenarios:

1. serial: Can be an integer (e.g. 3) or a percentage (e.g. 30%). Used to control how
many hosts Ansible will manage at once.

2. max_fail_percentage: An integer between 1-100. Used to tell Ansible what
percentage of hosts can fail a task before the play will be aborted.

If you have some headroom in your infrastructure, set these values higher. If you
have only as much infrastructure running as your application needs, and having
more than one or two servers offline would put your infrastructure into a bad state,
you should be more conservative with these settings—and maybe provision a little
more capacity!

Chapter 10 - Deployments with Ansible 288

Code for this entire example is available on GitHub in the Ansible for
DevOps deployments-rolling example¹¹⁷.

Deploying to app servers behind a load balancer

In the case of Server Check.in, there were two separate API layers that managed
the complexity of ensuring all server checks happen, regardless of whether certain
servers are up or down. The ‘load balancing’ occurs on the application layer instead
of as a separate infrastructure layer (this is extremely helpful when dealing with
global latency and network reliability variation).

For many applications, especially those with app servers close together (e.g. in the
same data center) the infrastructure layer follows a more traditional layout, with a
load balancer to handle the API request distribution:

Four servers behind a load balancer.

For a demonstration of zero-downtime deployment with a load balancer, let’s build
a local infrastructure with one HAProxy load balancer and two Apache webservers.

First, create a new project folder deployments-balancer, and within it, create the
following Vagrantfile:

¹¹⁷https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-rolling

https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-rolling
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-rolling
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-rolling

Chapter 10 - Deployments with Ansible 289

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure("2") do |config|

5 # Base VM OS configuration.

6 config.vm.box = "geerlingguy/ubuntu2004"

7 config.vm.synced_folder '.', '/vagrant', disabled: true

8 config.ssh.insert_key = false

9

10 config.vm.provider :virtualbox do |v|

11 v.memory = 512

12 v.cpus = 1

13 v.linked_clone = true

14 end

15

16 # Define three VMs with static private IP addresses.

17 boxes = [

18 { :name => "bal1", :ip => "192.168.56.2" },

19 { :name => "app1", :ip => "192.168.56.3" },

20 { :name => "app2", :ip => "192.168.56.4" }

21]

22

23 # Provision each of the VMs.

24 boxes.each do |opts|

25 config.vm.define opts[:name] do |config|

26 config.vm.hostname = opts[:name]

27 config.vm.network :private_network, ip: opts[:ip]

28

29 # Provision all the VMs using Ansible after last VM is up.

30 if opts[:name] == "app2"

31 config.vm.provision "ansible" do |ansible|

32 ansible.playbook = "playbooks/provision.yml"

33 ansible.inventory_path = "inventory"

34 ansible.limit = "all"

35 end

36 end

Chapter 10 - Deployments with Ansible 290

37 end

38 end

39

40 end

This Vagrantfile will create three servers running Ubuntu: bal1 (the balancer), and
app1 and app2 (the application servers). We referenced an Ansible playbook at
playbooks/provision.yml (to install the required software on the servers), as well as
a custom inventory file at inventory. First, create the inventory file (inventory, in the
same directory as the Vagrantfile), with the appropriate groupings and connection
variables:

1 [balancer]

2 192.168.56.2

3

4 [app]

5 192.168.56.3

6 192.168.56.4

7

8 [deployments:children]

9 balancer

10 app

11

12 [deployments:vars]

13 ansible_user=vagrant

14 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

With this inventory, we can operate on just the balancer, just the app servers, or
all the servers together (in the deployments group). Next, create a playbook (at
playbooks/provision.yml) to provision the servers:

Chapter 10 - Deployments with Ansible 291

1 ---

2 - name: Firewall configuration.

3 hosts: all

4 become: yes

5

6 vars:

7 firewall_allowed_tcp_ports:

8 - "22"

9 - "80"

10

11 pre_tasks:

12 - name: Update apt cache if needed.

13 apt: update_cache=yes cache_valid_time=3600

14

15 roles:

16 - geerlingguy.firewall

17

18 - name: HAProxy Load Balancer setup.

19 hosts: balancer

20 become: yes

21

22 vars:

23 haproxy_backend_servers:

24 - name: 192.168.56.3

25 address: 192.168.56.3:80

26 - name: 192.168.56.4

27 address: 192.168.56.4:80

28

29 roles:

30 - geerlingguy.haproxy

31

32 - name: Apache webserver setup.

33 hosts: app

34 become: yes

35

36 roles:

Chapter 10 - Deployments with Ansible 292

37 - geerlingguy.apache

These three plays set up a firewall on all servers, configure HAProxy on the load
balancer, and install Apache (with its default configuration) on the app servers. The
only required configuration to get this infrastructure working is firewall_allowed_-
tcp_ports and haproxy_backend_servers. We let the roles do all the hard work for
us.

Now, to make sure we have all these roles installed, create a requirements file to
install the roles fromAnsible Galaxy. Create requirements.yml in the same directory
as the Vagrantfile, with the following contents:

1 ---

2 roles

3 - name: geerlingguy.firewall

4 - name: geerlingguy.haproxy

5 - name: geerlingguy.apache

To install the required roles, run ansible-galaxy install -r requirements.yml.

At this point, if you want to bring up your local load-balanced infrastructure, run
vagrant up in the deployments-balancer directory, and wait a few minutes. Once
everything is up and running, visit http://192.168.56.2/, and you should see the
default Ubuntu Apache2 landing page:

Chapter 10 - Deployments with Ansible 293

HAProxy is serving requests through the Apache backend servers.

Verify round-robin load balancing is working by running the following command:

1 $ for i in {1..5}; do curl -Is http://192.168.56.2/ | grep -i cookie; \

2 done

3 Set-Cookie: SERVERID=192.168.56.4; path=/

4 Set-Cookie: SERVERID=192.168.56.3; path=/

5 Set-Cookie: SERVERID=192.168.56.4; path=/

6 Set-Cookie: SERVERID=192.168.56.3; path=/

7 Set-Cookie: SERVERID=192.168.56.4; path=/

You should see the load balancer distributing requests between the two backend app
servers.

When you deploy new code to the application servers, you need to guarantee the load
balancer always has an app server from which requests can be served, so you want
to use serial to do the deployment on each server (or groups of servers) in sequence.
To make sure the servers are properly removed from HAProxy, then added again
post-deploy, use pre_tasks and post_tasks.

Create another playbook alongside provision.yml called deploy.yml, with the
following contents:

Chapter 10 - Deployments with Ansible 294

1 ---

2 - hosts: app

3 become: yes

4 serial: 1

5

6 pre_tasks:

7 - name: Disable the backend server in HAProxy.

8 haproxy:

9 state: disabled

10 host: '{{ inventory_hostname }}'

11 socket: /var/lib/haproxy/stats

12 backend: habackend

13 delegate_to: "{{ item }}"

14 with_items: "{{ groups.balancer }}"

15

16 tasks:

17 - name: Wait a short time to simulate a deployment.

18 pause:

19 seconds: 20

20

21 post_tasks:

22 - name: Wait for backend to come back up.

23 wait_for:

24 host: '{{ inventory_hostname }}'

25 port: 80

26 state: started

27 timeout: 60

28

29 - name: Enable the backend server in HAProxy.

30 haproxy:

31 state: enabled

32 host: '{{ inventory_hostname }}'

33 socket: /var/lib/haproxy/stats

34 backend: habackend

35 delegate_to: "{{ item }}"

36 with_items: "{{ groups.balancer }}"

Chapter 10 - Deployments with Ansible 295

This playbook doesn’t do much in terms of actual deployment, but it does illustrate
how to do a zero-downtime rolling update over two or more application servers:

1. In pre_tasks, the haproxy module disables the current app server (using the
inventory_hostname variable) on all the load balancers in the balancer group,
using with_items. The HAProxy task is delegated to each of the balancer

servers (in our case, only one), since the task affects the load balancer, not the
current app host.

2. In the post_tasks, we first wait_for port 80 to be available, and once it is, the
haproxy module re-enables the current app server on all the load balancers.

Run the playbook on the local infrastructure with the following command:

1 $ ansible-playbook -i inventory playbooks/deploy.yml

It take a minute or so to run, and once it’s finished, all the servers should be back
in the mix for the load balancer. If you want to quickly confirm the deployment
playbook is working as it should, add a task which always fails, immediately
following the debug task:

15 # [...]

16 tasks:

17 - debug: msg="Deployment would be done here."

18 - command: /bin/false

19

20 post_tasks:

21 # [...]

If you run the deployment playbook again, wait for it to fail, then run the curl

command again, you’ll notice all the requests are being directed to the second app
server:

Chapter 10 - Deployments with Ansible 296

1 $ for i in {1..5}; do curl -Is http://192.168.56.2/ | grep -i cookie; d\

2 one

3 Set-Cookie: SERVERID=192.168.56.4; path=/

4 Set-Cookie: SERVERID=192.168.56.4; path=/

5 Set-Cookie: SERVERID=192.168.56.4; path=/

6 Set-Cookie: SERVERID=192.168.56.4; path=/

7 Set-Cookie: SERVERID=192.168.56.4; path=/

Fix the deployment by removing the /bin/false command. Run the playbook one
more time to restore the infrastructure to a fully functional state.

This demonstration may seem basic, but the pre_tasks and post_tasks in the play-
book are identical to what many large-scale production infrastructure deployments
use!

Code for this entire example is available on GitHub in the Ansible for
DevOps deployments-balancer example¹¹⁸.

Capistrano-style and blue-green deployments

Many developers who deal with Ruby applications are familiar with Capistrano¹¹⁹,
a task automation and application deployment application built with Ruby. Capis-
trano’s basic style of deployment is to create dated release directories, then symlink
the current release into a stable application directory, along with resources that are
continuous among releases (like logs and uploaded files).

Capistrano does a lot more than that basic deployment model, but many people want
to replicate a simple application deployment workflow (which also makes rollbacks
easy, since you just revert the symlink to the previous release directory!). This is easy
to do with Ansible, and rather than walk you through the entire process in this book,
I’ll point you to a few great resources and an Ansible Galaxy role that coordinates
Capistrano-style deployments with ease:

¹¹⁸https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-balancer
¹¹⁹http://capistranorb.com/

https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-balancer
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-balancer
http://capistranorb.com/
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-balancer
http://capistranorb.com/

Chapter 10 - Deployments with Ansible 297

• Rebuilding Capistrano-like deployment with Ansible¹²⁰
• project_deploy role on Ansible Galaxy¹²¹
• Thoughts on deploying with Ansible¹²² (background for the above role)
• Ansible project-deploy¹²³ (presentation about the above role)

Extending things a little further, many organizations use blue-green deployments.
The basic concept involves bringing up a parallel production infrastructure, then
switching over to it. The cutover may take only a few milliseconds and no active
production infrastructure is ever offline during the deployment process.

A few different technologies and concepts, like container-based infrastructure and
microservices (which are faster to deploy), and better cloud autoscaling and load
balancing options, have made blue-green deployments much easier than in the past.

This book won’t go through a detailed example of this style of deployment, as the
process is similar to other examples provided, the only difference being an additional
task of switching a load balancer from the old to the new infrastructure once it’s
up and running. Ansible’s blog has an excellent overview of AWS-based blue-green
deployments: Immutable Systems and Ansible¹²⁴, and there are built-in modules to
manage almost any type of load balancer you could use, including F5’s BIG-IP¹²⁵,
HAProxy¹²⁶, Citrix NetScaler¹²⁷, and Amazon ELB¹²⁸.

Additional Deployment Features

There are a few other Ansible modules and options which are helpful in the context
of deployments:

run_once¹²⁹ and delegate_to are extremely helpful in scenarios like updating a
database schema or clearing an application’s cache, where you need a particular task
to only run one time, on a particular server:
¹²⁰http://blog.versioneye.com/2014/09/24/rebuilding-capistrano-like-deployment-with-ansible/
¹²¹https://github.com/f500/ansible-project_deploy
¹²²http://www.future500.nl/articles/2014/07/thoughts-on-deploying-with-ansible/
¹²³http://www.slideshare.net/ramondelafuente/ansible-projectdeploy
¹²⁴http://www.ansible.com/blog/immutable-systems
¹²⁵https://docs.ansible.com/ansible/latest/collections/f5networks/f5_modules/index.html
¹²⁶https://docs.ansible.com/ansible/latest/collections/community/general/haproxy_module.html
¹²⁷https://docs.ansible.com/ansible/latest/collections/community/network/netscaler_service_module.html
¹²⁸https://docs.ansible.com/ansible/latest/collections/amazon/aws/elb_classic_lb_module.html#ansible-collections-

amazon-aws-elb-classic-lb-module
¹²⁹http://docs.ansible.com/playbooks_delegation.html#run-once

http://blog.versioneye.com/2014/09/24/rebuilding-capistrano-like-deployment-with-ansible/
https://github.com/f500/ansible-project_deploy
http://www.future500.nl/articles/2014/07/thoughts-on-deploying-with-ansible/
http://www.slideshare.net/ramondelafuente/ansible-projectdeploy
http://www.ansible.com/blog/immutable-systems
https://docs.ansible.com/ansible/latest/collections/f5networks/f5_modules/index.html
https://docs.ansible.com/ansible/latest/collections/community/general/haproxy_module.html
https://docs.ansible.com/ansible/latest/collections/community/network/netscaler_service_module.html
https://docs.ansible.com/ansible/latest/collections/amazon/aws/elb_classic_lb_module.html#ansible-collections-amazon-aws-elb-classic-lb-module
http://docs.ansible.com/playbooks_delegation.html#run-once
http://blog.versioneye.com/2014/09/24/rebuilding-capistrano-like-deployment-with-ansible/
https://github.com/f500/ansible-project_deploy
http://www.future500.nl/articles/2014/07/thoughts-on-deploying-with-ansible/
http://www.slideshare.net/ramondelafuente/ansible-projectdeploy
http://www.ansible.com/blog/immutable-systems
https://docs.ansible.com/ansible/latest/collections/f5networks/f5_modules/index.html
https://docs.ansible.com/ansible/latest/collections/community/general/haproxy_module.html
https://docs.ansible.com/ansible/latest/collections/community/network/netscaler_service_module.html
https://docs.ansible.com/ansible/latest/collections/amazon/aws/elb_classic_lb_module.html#ansible-collections-amazon-aws-elb-classic-lb-module
https://docs.ansible.com/ansible/latest/collections/amazon/aws/elb_classic_lb_module.html#ansible-collections-amazon-aws-elb-classic-lb-module
http://docs.ansible.com/playbooks_delegation.html#run-once

Chapter 10 - Deployments with Ansible 298

- command: /opt/app/upgrade-database-schema

run_once: true

delegate_to: app1.example.com

Using run_oncewith delegate_to is similar to the pattern of using when: inventory_-

hostname == groups.groupname[0], but is a little more precise in describing what
you’re trying to achieve—running a command once on a specific host.

Another important aspect of a successful deployment is communication. If you’re
running playbooks as part of a CI/CD process, or in some other automated fashion,
use one of the many built-in Ansible notification modules to share the deployment’s
progress via chat, email, or even text-to-speech on your Mac with the osx_say

module! Ansible includes easy-to-use notification modules for:

• Campfire
• HipChat
• IRC
• Jabber
• Email
• Slack
• Twilio
• Amazon SNS
• etc.

Many playbooks include notifications in both the pre_tasks and post_tasks sections,
notifying admins in a chat channel when a deployment begins or ends. For example:

post_tasks:

- name: Tell everyone on IRC the deployment is complete.

irc:

channel: my-org

server: irc.example.com

msg: "Deployment complete!"

delegate_to: 127.0.0.1

For a great primer on Ansible notifications, see Ansible Inc’s blog post: Listen to your
Servers Talk¹³⁰.
¹³⁰http://www.ansible.com/blog/listen-to-your-servers-talk

http://www.ansible.com/blog/listen-to-your-servers-talk
http://www.ansible.com/blog/listen-to-your-servers-talk
http://www.ansible.com/blog/listen-to-your-servers-talk

Chapter 10 - Deployments with Ansible 299

Summary

Automating deployments with Ansible enables your development team to have
their code on production servers more reliably and quickly, and it enables your
operations team to spend less time on repetitive tasks, and more time improving
your infrastructure.

This chapter outlined only a few of the most popular deployment techniques, but
Ansible is flexible enough to handle almost any situation out of the box.

/ One machine can do the work of fifty \

| ordinary men. No machine can do the |

| work of one extraordinary man. |

\ (Elbert Hubbard) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 11 - Server Security and
Ansible
The first configuration to be performed on any new server—especially any server
with any exposure (direct or indirect) to the public Internet)—is security configura-
tion.

There are nine basic measures to ensure servers are secure from unauthorized access
or intercepted communications:

1. Use secure and encrypted communication.
2. Disable root login and use sudo.
3. Remove unused software, open only required ports.
4. Use the principle of least privilege.
5. Update the OS and installed software.
6. Use a properly-configured firewall.
7. Make sure log files are populated and rotated.
8. Monitor logins and block suspect IP addresses.
9. Use SELinux (Security-Enhanced Linux).

Your infrastructure is as weak as the weakest server; in many high-profile security
breaches, one poorly-secured server acts as a gateway into the rest of the network.
Don’t let your servers be those servers! Good security also helps you achieve the holy
grail of system administration—100% uptime.

In this chapter, you’ll learn about Linux security and how Ansible helps secure your
servers, following the basic topics above.

A brief history of SSH and remote access

In the beginning, computers were the size of large conference rooms. A punch
card reader would merrily accept pieces of paper with instructions the computer

Chapter 11 - Server Security and Ansible 301

would run, and then a printer would etch the results into another piece of paper.
Thousands of mechanical parts worked harmoniously (when they did work) to
compute relatively simple commands.

As time progressed, computers became somewhat smaller, and interactive terminals
became more user-friendly, but they were still wired directly into the computer
being used. Mainframes came to the fore in the 1960s, originally used via typewriter
and teletype interfaces, then via keyboards and small text displays. As networked
computing became more mainstream in the 1970s and 1980s, remote terminal access
was used to interact with the large central computers.

The first remote terminal interfaces assumed a high level of trust between the central
computer and all those on the network, because the small, centralized networks used
were physically isolated from one another.

Telnet

In the late 1960s, the Telnet protocol was defined and started being used over TCP
networks (normally on port 23) for remote control over larger private networks, and
eventually the public Internet.

Telnet’s underlying technology (a text-based protocol to transfer data between
different systems) was the basis for many foundational communications protocols
in use today, including HTTP, FTP, and POP3. However, plain text streams are not
secure, and even with the addition of TLS and SASL, Telnet was never very secure
by default. With the advent of SSH (which we’ll get to in a bit), the protocol has
declined in popularity for most remote administration purposes.

Telnet still has uses like configuring devices over local serial connections, or checking
if a particular service is operating correctly on a remote server (like an HTTP server
on port 80, mysql on port 3306, or munin on port 4949), but it is not installed by
default on modern Linux distributions.

Chapter 11 - Server Security and Ansible 302

Plain text communications over a network are only as secure as the net-
work’s weakest link. In the early days of computer networking, networks
were usually isolated to a specific company or educational institution,
so transmitting things like passwords or secrets in plain text using the
TCP protocol wasn’t such a bad idea. Every part of the network (cabling,
switches, and routers) was contained inside a secured physical perimeter.
When connections started moving to the public Internet, this changed.

TCP packets can be intercepted over the Internet, at any point between
the client and server, and these packets can easily be read if not encrypted.
Therefore, plain text protocols are highly insecure, and should never be
used to transmit sensitive information or system control data. Even on
highly secure networks with properly-configured firewalls, it’s a bad idea
to use insecure communication methods like plain text rlogin and telnet
connections for authentication and remote control.

Try running traceroute google.com in your terminal. Look at each of the
hops between you and Google’s CDN. Do you know who controls each
of the devices between your computer and Google? Do you trust these
operators with all of your personal or corporate secrets? Probably not. Each
of these connection points—and each network device and cable connecting
them—is a weak point exposing you to a man-in-the-middle attack. Strong
encryption is needed between your computer and the destination if you
want to ensure data security.

rlogin, rsh and rcp

rloginwas introduced in BSD 4.2 in 1983, and has been distributed with many UNIX-
like systems alongside Telnet until recently. rlogin was used widely during the 80s
and much of the 90s.

Just like Telnet, a user could log into the remote system with a password, but rlogin
additionally allowed automatic (passwordless) logins for users on trusted remote
computers. rlogin also worked better than telnet for remote administration, as it
worked correctly with certain characters and commands where telnet required extra
translation.

However, like Telnet, rlogin still used plain text communications over TCP port 513
by default. rlogin also didn’t have many safeguards against clients spoofing their

Chapter 11 - Server Security and Ansible 303

true identities. Some of rlogin’s intrinsic flaws were highlighted in a 1998 report by
Carnegie Mellon, rlogin: The Untold Story¹³¹.

rsh (“remote shell”) is a command line program used alongside rlogin to execute
individual shell commands remotely, and rcp (“remote copy”) is used for remote file
copies. rsh and rcp inherited the same security problems as rlogin, since they use the
same connection method (over different ports).

SSH

Secure Shell was created in 1995 by Finland native Tatu Ylönen, in response
to a password-sniffing attack¹³² at his university. Seeing the flaws in plain text
communication for secure information, Tatu created Secure Shell/SSH with a strong
emphasis on encryption and security.

His version of SSH was developed for a few years as freeware with liberal licensing,
but as his SSH Communications Security Corporation¹³³ began limiting the license
and commercializing SSH, alternative forks began to gain in popularity. The most
popular fork, OSSH, by Swedish programmer Bjoern Groenvall, was chosen as a
starting point by some developers from the OpenBSD project.

OpenBSD was (and still is!) a highly secure, free version of BSD UNIX, and the
project’s developers needed a secure remote communication protocol, so a few
project members worked to clean up and improve OSSH¹³⁴ so it could be included
in OpenBSD’s 2.6 release in December 1999. From there, it was quickly ported and
adopted for all major versions of Linux, and is now ubiquitous in the world of POSIX-
compliant operating systems.

How does SSH work, and what makes it better than telnet or rlogin? It starts with
the basic connection. SSH connection encryption works similarly to SSL for secure
HTTP connections, but its authentication layer adds more security:

1. When you enter ssh user@example.host to connect to the example.host server
as user, your client and the host exchange keys.

¹³¹http://resources.sei.cmu.edu/asset_files/TechnicalReport/1998_005_001_16670.pdf
¹³²http://en.wikipedia.org/wiki/Secure_Shell#Version_1.x
¹³³http://www.ssh.com/
¹³⁴http://www.openbsd.org/openssh/history.html

http://resources.sei.cmu.edu/asset_files/TechnicalReport/1998_005_001_16670.pdf
http://en.wikipedia.org/wiki/Secure_Shell#Version_1.x
http://www.ssh.com/
http://www.openbsd.org/openssh/history.html
http://resources.sei.cmu.edu/asset_files/TechnicalReport/1998_005_001_16670.pdf
http://en.wikipedia.org/wiki/Secure_Shell#Version_1.x
http://www.ssh.com/
http://www.openbsd.org/openssh/history.html

Chapter 11 - Server Security and Ansible 304

2. If you’re connecting to a host the first time, or if the host’s key has changed
since last time you connected (this happens often when connecting via DNS
rather than directly by IP), SSH will prompt you for your approval of the host
key.

3. If you have a private key in your ∼/.ssh folder matching one of the keys in
∼/.ssh/authorized_keys on the remote system, the connection continues to
step 4. Otherwise, if password authentication is allowed, SSH prompts you
for your password. There are other authentication methods as well, such as
Kerberos, but they are less common and not covered in this book.

4. The transferred key is used to create a session key used for the remainder of the
connection, encrypting all communication with a cipher such as AES, 3DES,
Blowfish or RC4 (‘arcfour’).

5. The connection remains encrypted and persists until you exit out of the remote
connection (in the case of an interactive session), or until the operation being
performed (an scp or sftp file transfer, for example) is complete.

SSH uses encrypted keys to identify the client and host (which adds a layer of security
over telnet and rlogin’s defaults), and then sets up a per-session encrypted channel
for further communication. This same connection method is used for interactive ssh
sessions, as well as for services like:

• scp (secure copy), SSH’s counterpart to rlogin’s rcp.
• sftp (secure FTP), SSH’s client/server file transfer protocol.
• SSH port forwarding (so you can run services securely over remote servers).
• SSH X11 forwarding (so you can use X windows securely).

(A full list of features is available on OpenBSD’s site: OpenSSH Features¹³⁵).

The full suite of SSH packages also includes helpful utilities like ssh-keygen, which
generates public/private key pairs suitable for use when connecting via SSH. You can
also install the utility ssh-copy-id, which speeds up the process of manually adding
your identity file to a remote server.

SSH is fairly secure by default—certainly more so than telnet or rlogin’s default
configuration—but for even greater security, there are a few extra settings you should

¹³⁵http://www.openbsd.org/openssh/features.html

http://www.openbsd.org/openssh/features.html
http://www.openbsd.org/openssh/features.html

Chapter 11 - Server Security and Ansible 305

use (all of these settings are configured in /etc/ssh/sshd_config, and require a
restart of the sshd service to take effect):

1. Disable password-based SSH authentication. Even though passwords are not
sent in the clear, disabling password-based authentication makes it impossible
for brute-force password attacks to even be attempted, even if you have the
additional (and recommended) layer of something like Fail2Ban running. Set
PasswordAuthentication no in the configuration.

2. Disable root account remote login. You shouldn’t log in as the root user
regardless (use sudo instead), but to reinforce this good habit, disable remote
root user account login by setting PermitRootLogin no in the configuration.
If you need to perform actions as root, either use sudo (preferred), or if it’s
absolutely necessary to work interactively as root, login with a normal account,
then su to the root account.

3. Explicitly allow/deny SSH for users. Enable or disable SSH access for particu-
lar users on your system with AllowUsers and DenyUsers. To allow only ‘John’
to log in, the rule would be AllowUsers John. To allow any user except John to
log in, the rule would be DenyUsers John.

4. Use a non-standard port. Change the default SSH port from 22 to something
more obscure, like 2849, and prevent thousands of ‘script kiddie’ attacks that
look for servers responding on port 22. While security through obscurity
is no substitute for actually securing SSH overall, it provides a slight extra
layer of protection. To change the port, set Port [new-port-number] in the
configuration.

We’ll cover how to configure some of these particular options in SSH in the next
section.

The evolution of SSH and the future of remote access

It has been over a decade since OpenSSH became the de facto standard of remote
access protocols, and since then Internet connectivity has changed dramatically. For
reliable, low-latency LAN and Internet connections, SSH is still the king due to
its simplicity, speed, and security. But in high-latency environments (think 3G or
4G mobile network connections, or satellite uplinks), using SSH is often a painful
experience.

Chapter 11 - Server Security and Ansible 306

In some circumstances, just establishing a connection takes time. Additionally, once
connected, the delay inherent in SSH’s TCP interface (where every packet must reach
its destination and be acknowledged before further input will be accepted) means
entering commands or viewing progress over a high-latency connection is an exercise
in frustration.

Mosh¹³⁶, “the mobile shell”, a new alternative to SSH, uses SSH to establish an initial
connection, then synchronizes the following local session with a remote session on
the server via UDP.

Using UDP instead of TCP requires Mosh to do a little extra behind-the-scenes work
to synchronize the local and remote sessions (instead of sending all local keystrokes
over the wire serially via TCP, then waiting for stdout and stderr to be returned, like
SSH).

Mosh also promises better UTF-8 support than SSH, and is well supported by all the
major POSIX-like operating systems (it even runs inside Google Chrome!).

It will be interesting to see where the future leads with regard to remote terminal
access, but one thing is for sure: Ansible will continue to support the most secure, fast,
and reliable connection methods to help you build and manage your infrastructure!

Use secure and encrypted communication

We spent a lot of time discussing SSH’s heritage and the way it works because it is, in
many ways, the foundation of a secure infrastructure—in almost every circumstance,
you will allow SSH remote access for your servers, so it’s important you know how it
works, and how to configure it to ensure you always administer the server securely,
over an encrypted connection.

Let’s look at the security settings configured in /etc/ssh/sshd_config (mentioned
earlier), and how to control them with Ansible.

For our secure server, we want to disable password-based SSH authentication (make
sure you can already log in via your SSH key before you do this!), disable remote
root login, and change the port over which SSH operates. Let’s do it!

¹³⁶https://www.usenix.org/system/files/conference/atc12/atc12-final32.pdf

https://www.usenix.org/system/files/conference/atc12/atc12-final32.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final32.pdf

Chapter 11 - Server Security and Ansible 307

1 ---

2 - hosts: example

3

4 handlers:

5 # Note: Use 'sshd' for Red Hat and its derivatives.

6 - name: restart ssh

7 service: name=ssh state=restarted

8

9 tasks:

10 - name: Update SSH configuration to be more secure.

11 lineinfile:

12 dest: /etc/ssh/sshd_config

13 regexp: "{{ item.regexp }}"

14 line: "{{ item.line }}"

15 state: present

16 validate: 'sshd -t -f %s'

17 with_items:

18 - regexp: "^PasswordAuthentication"

19 line: "PasswordAuthentication no"

20 - regexp: "^PermitRootLogin"

21 line: "PermitRootLogin no"

22 - regexp: "^Port"

23 line: "Port 2849"

24 notify: restart ssh

In this extremely simple playbook, we use a handler we define in the handlers

section to restart the ssh service, then set three options in SSH configuration
(PasswordAuthentication no, PermitRootLogin no, and Port 2849) using Ansible’s
lineinfile module.

If you’re ever editing files that could result in broken behavior after a change, it’s
important to validate changes using the validate option (in this case using sshd’s
-t option and passing a file path). This makes sure you don’t break sudo when you
save the changes. The %s is a placeholder for the file’s path, and will be filled in by
Ansible when Ansible runs the validation command.

Chapter 11 - Server Security and Ansible 308

You can use the validate option with Ansible’s copy, lineinfile,
blockinfile, and template modules.

If you change certain SSH settings, like the port for SSH, you need to
make sure Ansible’s inventory is updated. You can explicitly define the SSH
port for a host with the option ansible_ssh_port, and the local path to a
private key file (identity file) with ansible_ssh_private_key_file, though
Ansible uses keys defined by your ssh-agent setup, so typically a manual
definition of the key file is not required.

For newer versions of Red Hat Enterprise Linux or its derivatives which
have SELinux enabled, you also need to modify the default SELinux
configuration to allow port 2849 to be used by SSH, using Ansible’s seport
module:

- name: Allow sshd to listen on tcp port 2849.

seport:

ports: 2849

proto: tcp

setype: ssh_port_t

state: present

when: ansible_selinux.status == 'enabled'

Disable root login and use sudo

We’ve already disabled root login with Ansible’s lineinfilemodule in the previous
section, but we’ll cover a general Linux best practice here: don’t use the root account
if you don’t absolutely need to use it.

Linux’s sudo allows you (or other users) to run certain commandswith root privileges
(by default—you can also run commands as another user), ensuring you can perform
actions needing elevated privileges without requiring you to be logged in as root (or
another user).

Chapter 11 - Server Security and Ansible 309

Using sudo also forces you to be more explicit when performing certain actions with
security implications, which is always a good thing. You don’t want to accidentally
delete a necessary file, or turn off a required service, which is easy to do if you’re
root.

In Ansible, it’s preferred you log into the remote server with a normal or admin-level
system account, and use the become parameter with a value of yeswith any task, role,
include, or playbook requiring elevated privileges. For example, if restarting Apache
requires elevated privileges, you would write the task like so:

- name: Restart Apache.

service:

name: httpd

state: restarted

become: yes

Add become_user: [username] to a task to specify a specific user account to use with
sudo (this will only apply if become is already set on the task or in the playbook).

You can also use Ansible to control sudo’s configuration, defining who should have
access to what commands and whether the user should be required to enter a
password, among other things.

As an example, set up the user johndoewith permission to use any command as root
via sudo by adding a line in the /etc/sudoers file with Ansible’s lineinfilemodule:

- name: Add sudo rights for deployment user.

lineinfile:

dest: /etc/sudoers

regexp: '^johndoe'

line: 'johndoe ALL=(ALL) NOPASSWD: ALL'

state: present

validate: 'visudo -cf %s'

As with the earlier SSH configuration, we make sure to validate the sudoers file to
ensure Ansible’s changes don’t result in a broken configuration.

Chapter 11 - Server Security and Ansible 310

You might be alarmed at the use of NOPASSWD for sudo privileges. After
all, aren’t passwords always more secure? Well, there are many cases
(especially in automation, if you don’t have interactive logins for service
accounts) where the convenience of not requiring a password for sudo use
outweighs the minimal security benefit of requiring a password for all sudo
activity.

For a good balance of convenience and security, you can also apply
NOPASSWD to only a specific set of commands an account should be able
to run without a password.

Another way of changing the sudoers file is to create a sudoers file locally, and copy
it using Ansible’s copy module, like so:

- name: Copy validated sudoers file into place.

copy:

src: sudoers

dest: /etc/sudoers

validate: 'visudo -cf %s'

The sudoers file syntax is very powerful and flexible, but also a bit obtuse.
Read the entire Sudoers Manual¹³⁷ for all the details, or check out the
sample sudoers file¹³⁸ for some practical examples.

Remove unused software, open only required
ports

Before the widespread use of configuration management tools for servers, when
snowflake servers were the norm, servers would become bloated with extra software
no longer in active use, open ports for old and unnecessary services, and old
configuration settings opening up potential attack vectors.

¹³⁷http://www.sudo.ws/sudoers.man.html
¹³⁸http://www.sudo.ws/sudo/sample.sudoers

http://www.sudo.ws/sudoers.man.html
http://www.sudo.ws/sudo/sample.sudoers
http://www.sudo.ws/sudoers.man.html
http://www.sudo.ws/sudo/sample.sudoers

Chapter 11 - Server Security and Ansible 311

If you’re not actively using a piece of software, or there’s an obsolete cron task, get rid
of it. If you’re using Ansible for your entire infrastructure, this shouldn’t be an issue,
since you could just bring up new servers to replace old ones when you have major
configuration and/or package changes. But if not, consider adding in a ‘cleanup’ role
or at least a task to remove packages that shouldn’t be installed, like:

- name: Remove unused packages.

package:

name:

- nano

- sendmail

state: absent

purge: yes

With modules like package, dnf, apt, file, and mysql_db, a state: absent parameter
means Ansible will remove whatever packages, files or databases you want, and will
check to make sure this is still the case during future runs of your playbook.

Opening only required ports helps reduce the surface area for attack, requiring only
a few firewall rules. This will be covered fully in the “Use a properly-configured
firewall” section, but as an example, don’t leave port 25 open on your server unless
your server will be used as an SMTP relay server. Further, make sure the services you
have listening on your open ports are configured to only allow access from trusted
clients.

Use the principle of least privilege

Users, applications, and processes should only be able to access information (files)
and resources (memory, network ports, etc) necessary for their operation.

Many of the other basic security measures in this chapter are tangentially related to
the principle of least privilege, but user account configuration and file permissions
are two main areas directly related to the principle.

Chapter 11 - Server Security and Ansible 312

User account configuration

New user accounts, by default, have fairly limited permissions on a Linux server.
They usually have a home folder, over which they have complete control, but any
other folder or file on the system is only available for reading, writing, or execution
if the folder has group permissions set.

Usually, users gain access to other files and services through two methods:

1. Adding the user to another group with wider access privileges.
2. Allowing the user to use the sudo command to execute commands and access

files as root or another user.

For the former method, please read the next section on file permissions to learn how
to limit access. For the latter, please make sure you understand the use of sudoers as
explained earlier in this chapter.

File permissions

Every Ansible module that deals with files has file ownership and permission
parameters available, including owner, group, and mode. Almost every time you
handle files (using copy, template, file, etc.), you should explicitly define the correct
permissions and ownership. For example, for a configuration file (in our example, the
GitLab configuration file) that should only be readable or writeable by the root user,
set the following:

- name: Configure the GitLab global configuration file.

file:

path: /etc/gitlab/gitlab.rb

owner: root

group: root

mode: 0600

Chapter 11 - Server Security and Ansible 313

File permissions may seem a bit obtuse, and sometimes, they may cause
headaches. But in reality, using octal numbers to represent file permissions
is a helpful way to encapsulate a lot of configuration in three numbers.
The main thing to remember is the following: for each of the file’s user,
group, and for everyone (each of the three digits), use the following digits
to represent permission levels:

7: rwx (read/write/execute)

6: rw- (read/write)

5: r-x (read/execute)

4: r-- (read)

3: -wx (write/execute)

2: -w- (write)

1: --x (execute)

0: --- (no permissions)

Basically, 4 = read, 2 = write and 1 = execute. Therefore read (4) and write
(2) is 6 in the octal representation, and read (4) and execute (1) is 5.

Less experienced admins are overly permissive, setting files and directories to 777 to
fix issues they have with their applications. To allow one user (for example, your web
server user, httpd or nginx) access to a directory or some files, you should consider
setting the directory’s or files’ group to the user’s group instead of giving permissions
to every user on the system!

For example, if you have a directory of web application files, the user (or in Ansible’s
terminology, “owner”) might be your personal user account, or a deployment or
service account on the server. Set the group for the files to a group the web server
user is in, and the web server should now be able to access the files (assuming you
have the same permissions set for the user and group, like 664).

Update the OS and installed software

Every year, hundreds of security updates are released for the packages running on
your servers, some of them fixing critical bugs. If you don’t keep your server software

Chapter 11 - Server Security and Ansible 314

up to date, you will be extremely vulnerable, especially when large exposures like
Heartbleed¹³⁹ are uncovered.

At a minimum, you should schedule regular patchmaintenance and package upgrade
windows, and make sure you test the upgrades and patches on non-critical servers
to make sure your applications work before applying the same on your production
infrastructure.

With Ansible, since you already have your entire infrastructure described via Ansible
inventories, you should be able to use a command like the following to upgrade all
installed packages on a RHEL system:

$ ansible webservers -m dnf -a "name=* state=latest"

On a Debian-based system, the syntax is similar:

$ ansible webservers -m apt -a "upgrade=dist update_cache=yes"

The above commands will upgrade everything installed on your server. Some-
times, you only want to install security-related updates, or exclude certain pack-
ages. In those cases, you need to configure dnf or apt to tell them what to do
(edit /etc/dnf/dnf.conf for dnf on RHEL-based systems, or use apt-mark hold

[package-name] to keep a certain package at its current version on Debian-based
systems).

Automating updates

Fully automated daily or weekly package and system upgrades provide even greater
security. Not every environment or corporation can accommodate frequent auto-
mated upgrades (especially if your application has been known to break due to past
package updates, or relies on custom builds or specific package versions), but if you
do it for your servers, it will increase the depth of your infrastructure’s security.

As mentioned in an earlier sidebar, GPG package signature checking is
enabled by default for all package-related functionality. It’s best to leave
GPG checks in place, and import keys from trusted sources when necessary,
especiallywhen using automatic updates, if youwant to prevent potentially
insecure packages from being installed on your servers!

¹³⁹http://heartbleed.com/

http://heartbleed.com/
http://heartbleed.com/

Chapter 11 - Server Security and Ansible 315

Automating updates for RHEL systems

RHEL and CentOS 6 and 7 (and older versions of Fedora) uses a cron-based package,
yum-cron, for automatic updates. For basic, set-and-forget usage, install yum-cron and
make sure it’s started and set to run on system boot:

- name: Install yum-cron.

yum:

name: yum-cron

state: present

- name: Ensure yum-cron is running and enabled on boot.

service:

name: yum-cron

state: started

enabled: yes

Further configuration (such as packages to exclude from automatic updates) is done
in the yum.conf file, at /etc/yum.conf.

For RHEL/Rocky/Alma Linux 8 and later (and the latest versions of Fedora), install
dnf-automatic instead of yum-cron, and the service to start is dnf-automatic-install.timer
(instead of yum-cron).

Automating updates for Debian-based systems

Debian and its derivatives typically use the unattended-upgrades package to config-
ure automatic updates. Like yum-cron, it is easy to install, and its configuration is
placed in a variety of files within /etc/apt/apt.conf.d/:

Chapter 11 - Server Security and Ansible 316

- name: Install unattended upgrades package.

apt:

name: unattended-upgrades

state: present

- name: Copy unattended-upgrades configuration files in place.

template:

src: "../templates/{{ item }}.j2"

dest: "/etc/apt/apt.conf.d/{{ item }}"

owner: root

group: root

mode: 0644

with_items:

- 20auto-upgrades

- 50unattended-upgrades

The template files copied in the second task should look something like the following:

File: /etc/apt/apt.conf.d/20auto-upgrades

APT::Periodic::Update-Package-Lists "1";

APT::Periodic::Unattended-Upgrade "1";

This file provides configuration for the apt script that runs as part of the unattended
upgrades package, and tells apt whether to enable unattended upgrades.

File: /etc/apt/apt.conf.d/50unattended-upgrades

Unattended-Upgrade::Automatic-Reboot "false";

Unattended-Upgrade::DevRelease "false";

Unattended-Upgrade::Allowed-Origins {

"${distro_id}:${distro_codename}";

"${distro_id}:${distro_codename}-security";

"${distro_id}ESM:${distro_codename}";

// "${distro_id}:${distro_codename}-updates";

Chapter 11 - Server Security and Ansible 317

// "${distro_id}:${distro_codename}-proposed";

// "${distro_id}:${distro_codename}-backports";

};

This file provides further configuration for unattended upgrades, like whether to
automatically restart the server for package and kernel upgrades requiring a reboot,
or what apt sources should be checked for updated packages.

Make sure you get notifications or check in on your servers period-
ically so you know when they’ll need a manual reboot if you have
Automatic-Reboot set to false!

Use a properly-configured firewall

If you were building a secure bank vault, you wouldn’t want to have many doors
and windows leading into the vault. You’d instead build reinforced concrete walls,
and have one or two strong metal doors.

Similarly, you should close any port not explicitly required to remain open on all your
servers—whether in a DMZ in your network or open to the entire Internet. There are
dozens of different ways to manage firewalls nowadays, from iptables and helpful
tools like ufw and firewalld that help make iptables configuration easier, to AWS
security groups and other external firewall services.

Ansible includes built-in support for configuring server firewalls with ufw (common
on newer Debian and Ubuntu distributions) and firewalld (common on newer
Fedora, and RHEL-based distributions).

Configuring a firewall with ufw on Debian or Ubuntu

Below is an entire firewall configuration to lock down most everything on a Debian
or Ubuntu server, allowing traffic only through ports 22 (SSH), 80 (HTTP), and 123
(NTP):

Chapter 11 - Server Security and Ansible 318

- name: Configure open ports with ufw.

ufw:

rule: "{{ item.rule }}"

port: "{{ item.port }}"

proto: "{{ item.proto }}"

with_items:

- { rule: 'allow', port: 22, proto: 'tcp' }

- { rule: 'allow', port: 80, proto: 'tcp' }

- { rule: 'allow', port: 123, proto: 'udp' }

- name: Configure default incoming/outgoing rules with ufw.

ufw:

direction: "{{ item.direction }}"

policy: "{{ item.policy }}"

state: enabled

with_items:

- { direction: outgoing, policy: allow }

- { direction: incoming, policy: deny }

If you run a playbook with the above rules, then log into the machine (or use
the ansible command) and run sudo ufw status verbose, you should see the
configuration has been updated to the following:

$ sudo ufw status verbose

Status: active

Logging: on (low)

Default: deny (incoming), allow (outgoing), disabled (routed)

New profiles: skip

To Action From

-- ------ ----

22/tcp ALLOW IN Anywhere

80/tcp ALLOW IN Anywhere

123/udp ALLOW IN Anywhere

22/tcp (v6) ALLOW IN Anywhere (v6)

Chapter 11 - Server Security and Ansible 319

80/tcp (v6) ALLOW IN Anywhere (v6)

123/udp (v6) ALLOW IN Anywhere (v6)

Configuring a firewall with firewalld on Fedora, RHEL
and RHEL-derivatives

The same firewall configuration can be done via firewalld for RHEL-based systems
with similar ease:

- name: Configure open ports with firewalld.

firewalld:

state: "{{ item.state }}"

port: "{{ item.port }}"

zone: external

immediate: yes

permanent: yes

with_items:

- { state: 'enabled', port: '22/tcp' }

- { state: 'enabled', port: '80/tcp' }

- { state: 'enabled', port: '123/udp' }

The immediate parameter was added in Ansible 1.9, and is required to make
the rules effective immediately when the permanent parameter is set to yes.
If you are running an older version of Ansible, you will need to restart to
see your changes, or set permanent to no.

firewalld doesn’t have an explicit command to allow setting default
inbound/outbound policies, but you can still use iptables commands or
manage the firewall via XML files inside /etc/firewalld.

If you run sudo firewall-cmd --zone=external --list-all, you should see the
open ports:

Chapter 11 - Server Security and Ansible 320

$ sudo firewall-cmd --zone=external --list-all

external

interfaces:

sources:

services: ssh

ports: 123/udp 80/tcp 22/tcp

masquerade: yes

forward-ports:

icmp-blocks:

rich rules:

Some still prefer configuring firewalls with iptables (which is sometimes obtuse, but
is almost infinitely malleable). This approach is used in the geerlingguy.firewall

role on Ansible Galaxy, which translates variables like firewall_allowed_tcp_ports
and firewall_forwarded_tcp_ports into iptables rules, and provides a firewall

service for loading firewall rules.

It doesn’t really matter what method you use to control access to your server, but
the principle of least privilege applies here, as in most security-related discussions:
only allow access on ports absolutely necessary for the functionality of your server,
and restrict the use of those ports to only the hosts or subnets needing access to the
services listening on the ports.

When you’re building up a firewall, make sure you don’t accidentally lock
down ports or IP addresses that will lock you out of the server entirely,
otherwise you’ll have to connect to the server through a local terminal
connection and start over!

Make sure log files are populated and rotated

Checking server logs is one of the most effective ways to not only see what attacks
have taken place on a server, but also to see trends over time and predict high-traffic
periods, potential attack vectors, and potential catastrophe.

But logs are completely worthless if they aren’t being populated with effective data,
aren’t being monitored in any way, or are the cause of an outage! Many root cause

Chapter 11 - Server Security and Ansible 321

analyses conclude, “the server’s disk was full because log file x took up all the free
space”.

I have my eyes on you, 218.78.214.9…

sshd[19731]: input_userauth_request: invalid user db2admin

sshd[19731]: Received disconnect from 218.78.214.9: 11: Bye Bye

sshd[19732]: Invalid user jenkins from 218.78.214.9

sshd[19733]: input_userauth_request: invalid user jenkins

sshd[19733]: Received disconnect from 218.78.214.9: 11: Bye Bye

sshd[19734]: Invalid user jenkins from 218.78.214.9

sshd[19735]: input_userauth_request: invalid user jenkins

sshd[19735]: Received disconnect from 218.78.214.9: 11: Bye Bye

sshd[19736]: Invalid user minecraft from 218.78.214.9

sshd[19737]: input_userauth_request: invalid user minecraft

sshd[19737]: Received disconnect from 218.78.214.9: 11: Bye Bye

Only you will know what logs are the most important to monitor on your servers,
but some of the most common ones are database slow query logs, web server
access and error logs, authorization logs, and cron logs. Use tools like the ELK stack
(demonstrated in a cookbook in Chapter 9), Munin, Nagios, or even a hosted service
to make sure logs are populated and monitored.

Additionally, you should always make sure log files are rotated and archived
(according to your infrastructure’s needs) using a tool like logrotate, and you should
have monitoring enabled on log file sizes so you have an early warning when a
particular log file or directory grows a bit too large. There are a number of logrotate
roles on Ansible Galaxy (e.g. Nick Hammond’s logrotate role¹⁴⁰) that make rotation
configuration easy.

Monitor logins and block suspect IP addresses

If you’ve ever set up a new server on the public internet and enabled SSH on port
22 with password-based login enabled, you know how quickly the deluge of script-
based logins begins. Many honeypot servers detect hundreds or thousands of such
attempts per hour.
¹⁴⁰https://galaxy.ansible.com/nickhammond/logrotate/

https://galaxy.ansible.com/nickhammond/logrotate/
https://galaxy.ansible.com/nickhammond/logrotate/

Chapter 11 - Server Security and Ansible 322

If you allow password-based login (for SSH, for your web app, or for anything else),
you need to implement some form of monitoring and rate limiting. At a most basic
level, you should install a tool like Fail2Ban¹⁴¹, which monitors log files and bans IP
addresses when it detects too many unsuccessful login attempts in a given period of
time.

Here’s a set of tasks you could add to your playbook to install Fail2Ban and make
sure it’s started on either Debian or RHEL-based distributions:

- name: Install fail2ban (RedHat).

dnf:

name: fail2ban

state: present

enablerepo: epel

when: ansible_os_family == 'RedHat'

- name: Install fail2ban (Debian).

apt:

name: fail2ban

state: present

when: ansible_os_family == 'Debian'

- name: Ensure fail2ban is running and enabled on boot.

service:

name: fail2ban

state: started

enabled: yes

Fail2Ban configuration is managed in a series of .conf files inside /etc/fail2ban,
and most configuration can be done by overriding defaults in a local override file,
/etc/fail2ban/jail.local. See the Fail2Ban manual¹⁴² for more information.

¹⁴¹http://www.fail2ban.org/wiki/index.php/Main_Page
¹⁴²http://www.fail2ban.org/wiki/index.php/MANUAL_0_8

http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.fail2ban.org/wiki/index.php/MANUAL_0_8
http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.fail2ban.org/wiki/index.php/MANUAL_0_8

Chapter 11 - Server Security and Ansible 323

Use SELinux (Security-Enhanced Linux) or
AppArmor

SELinux and AppArmor are two different tools which allow you to construct security
sandboxes for memory and filesystem access, so, for example, one application can’t
easily access another application’s resources. It’s a little like user and group file
permissions, but allowing far finer detail—with far more complexity.

You’d be forgiven if you disabled SELinux or AppArmor in the past; both require
extra work to set up and configure for your particular servers, especially if you’re
using less popular distribution packages (extremely popular packages like Apache
and MySQL are extremely well supported out-of-the-box on most distributions).

However, both of these tools are excellent ways to add defense in depth to your
infrastructure. You should already have decent configurations for firewalls, file
permissions, users and groups, OS updates, etc. But if you’re running a web-facing
application—especially one running on a server with any other applications—it’s
great to have the extra protection SELinux or AppArmor provides from applications
accessing things they shouldn’t.

SELinux is usually installed and enabled by default on Fedora and RHEL systems,
is available and supported on most other Linux platforms, and is widely supported
through Ansible modules, so we’ll cover SELinux in a bit more depth.

To enable SELinux in targetedmode (which is the most secure mode without being
almost impossible to work with), make sure the Python SELinux library is installed,
then use Ansible’s selinux module:

- name: Install Python SELinux library.

dnf:

name: python3-libselinux

state: present

- name: Ensure SELinux is enabled in `targeted` mode.

selinux:

policy: targeted

state: enforcing

Chapter 11 - Server Security and Ansible 324

Ansible also has a seboolean module that allows setting SELinux booleans. A very
common setting for web servers involves setting the httpd_can_network_connect

boolean:

- name: Ensure httpd can connect to the network.

seboolean:

name: httpd_can_network_connect

state: yes

persistent: yes

when: ansible_selinux.status == 'enabled'

The Ansible file module also integrates well with SELinux, allowing the four
security context fields for a file or directory to be set, one per parameter:

1. selevel
2. serole
3. setype
4. seuser

Building custom SELinux policies for more complex scenarios is out of the scope of
this chapter, but you should be able to use tools like setroubleshoot, getsebool,
and aureport to see what is being blocked, what booleans are available (and/or
enabled currently), and even get helpful notifications when SELinux denies access
to an application. Read Getting started with SELinux¹⁴³ for an excellent and concise
introduction.

Next time you’re tempted to disable SELinux instead of fixing the underlying
problem, spend a little time investigating the correct boolean settings to configuring
your system correctly for SELinux.

Summary and further reading

This chapter contains a broad overview of some Linux security best practices, and
how Ansible helps you conform to them. There is a wealth of good information on

¹⁴³https://major.io/2012/01/25/getting-started-with-selinux/

https://major.io/2012/01/25/getting-started-with-selinux/
https://major.io/2012/01/25/getting-started-with-selinux/

Chapter 11 - Server Security and Ansible 325

the Internet to help you secure your servers, including articles and publications like
the following:

• Linode Library: Linux Security Basics¹⁴⁴
• My First Five Minutes on a Server¹⁴⁵
• 20 Linux Server Hardening Security Tips¹⁴⁶
• Unix and Linux System Administration Handbook¹⁴⁷

Much of the security configuration in this chapter is encapsulated in a role on Ansible
Galaxy, for use on your own servers: security role by geerlingguy¹⁴⁸. The specific
examples used in this chapter are also available in the security example in this book’s
repository¹⁴⁹.

/ Bad planning on your part does not \

| constitute an emergency on my part. |

\ (Proverb) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

¹⁴⁴https://library.linode.com/security/basics
¹⁴⁵http://plusbryan.com/my-first-5-minutes-on-a-server-or-essential-security-for-linux-servers
¹⁴⁶http://www.cyberciti.biz/tips/linux-security.html
¹⁴⁷http://www.admin.com/
¹⁴⁸https://galaxy.ansible.com/geerlingguy/security/
¹⁴⁹https://github.com/geerlingguy/ansible-for-devops/tree/master/security

https://library.linode.com/security/basics
http://plusbryan.com/my-first-5-minutes-on-a-server-or-essential-security-for-linux-servers
http://www.cyberciti.biz/tips/linux-security.html
http://www.admin.com/
https://galaxy.ansible.com/geerlingguy/security/
https://github.com/geerlingguy/ansible-for-devops/tree/master/security
https://github.com/geerlingguy/ansible-for-devops/tree/master/security
https://library.linode.com/security/basics
http://plusbryan.com/my-first-5-minutes-on-a-server-or-essential-security-for-linux-servers
http://www.cyberciti.biz/tips/linux-security.html
http://www.admin.com/
https://galaxy.ansible.com/geerlingguy/security/
https://github.com/geerlingguy/ansible-for-devops/tree/master/security

Chapter 12 - Automating Your
Automation with Ansible Tower
and CI/CD
At this point, you should be able to convert almost any bit of your infrastructure’s
configuration into Ansible playbooks, roles, and inventories.

All the examples in this book use Ansible’s CLI to run playbooks and report back
the results. For smaller teams, especially when everyone on the team is well-versed
in how to use Ansible, YAML syntax, and security best practices, using the CLI is a
sustainable approach.

But for many organizations, basic CLI use is inadequate:

• The business needs detailed reporting of infrastructure deployments and fail-
ures, especially for audit purposes.

• Team-based infrastructure management requires varying levels of involvement
in playbook management, inventory management, and key and password
access.

• A thorough visual overview of the current and historical playbook runs and
server health helps identify potential issues before they affect the bottom line.

• Playbook scheduling ensures infrastructure remains in a known state.

Ansible Tower¹⁵⁰ fulfills these requirements—and many more—and provides a great
mechanism for team-based Ansible usage.

Ansible Tower is part of Red Hat’s Ansible Automation Platform, but it is built from
an open source upstream project, AWX¹⁵¹. AWX was open-sourced in 2017, shortly
after Red Hat acquired Ansible.

¹⁵⁰https://www.ansible.com/products/tower
¹⁵¹https://github.com/ansible/awx

https://www.ansible.com/products/tower
https://github.com/ansible/awx
https://www.ansible.com/products/tower
https://github.com/ansible/awx

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 327

While AWX and Tower are quite similar, AWX is updated much more
frequently, with fewer guarantees about upgrade compatibility. If you are
able and willing to keep up with AWX’s releases and deploy it on your
own, it is perfectly adequate for many use cases. Ansible Tower is part of
Red Hat’s broader subscription-based Ansible Automation Platform, and is
fully supported.

While this book includes a brief overview of Tower, it is highly recommended
you read through the extensive Tower User Guide¹⁵², which includes details this
book won’t be covering such as LDAP integration and multiple-team playbook
management workflows.

Installing Ansible AWX

Because Ansible Tower requires a Red Hat Subscription, and you might want to get
a feel for how it works before you fully commit to a subscription, it’s best to install
a test instance of AWX to get a feel for how Tower works and operates.

The quickest way to get AWX running is to use the AWX Docker Compose
installation method¹⁵³.

Make sure you have Ansible, Git, and Docker installed on your computer.

And to make sure the AWX installer can manage Docker containers, make sure you
have both the Docker and Docker Compose python libraries installed:

pip install docker docker-compose

Then install AWX by cloning the repository and running the install playbook:

$ git clone https://github.com/ansible/awx.git

$ cd awx/installer

$ ansible-playbook -i inventory install.yml

¹⁵²https://docs.ansible.com/ansible-tower/latest/html/userguide/index.html
¹⁵³https://github.com/ansible/awx/blob/devel/INSTALL.md#docker-compose

https://docs.ansible.com/ansible-tower/latest/html/userguide/index.html
https://github.com/ansible/awx/blob/devel/INSTALL.md#docker-compose
https://github.com/ansible/awx/blob/devel/INSTALL.md#docker-compose
https://docs.ansible.com/ansible-tower/latest/html/userguide/index.html
https://github.com/ansible/awx/blob/devel/INSTALL.md#docker-compose

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 328

AWX takes a few minutes to initialize, but should be accessible at localhost. Until
it’s initialized, you’ll see an ‘AWX is upgrading’ message.

Once AWX is initialized, you should be able to log in using the default credentials
(username admin and password password) and get to the default dashboard page:

AWX’s Dashboard

What’s up with the irate potato? Apparently it’s an inside joke. Sometimes
when using AWX you’ll see the ‘AWX with Wings’ logo, which as far as
I can tell has its roots as one of the original logos of the ‘AnsibleWorks’
organization that eventually became Ansible, Inc. and is part of Red Hat
today. But other times you’ll see the Angry Spud. ‘Angry Spud,’ ‘Rage Tater,’
and ‘The Starchy Miracle’ are some internal nicknames for our potato
friend.

Like Ansible’s tendency to wrap output in cowsay if you have it installed,
some of these strange but fun quirks make using Ansible tools more fun by
giving them personality—at least in the author’s opinion.

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 329

Using AWX

Tower and AWX are centered around the idea of organizing Projects (which run
your playbooks via Jobs) and Inventories (which describe the servers on which your
playbooks should be run) inside ofOrganizations.Organizations are then set up with
different levels of access based on Users and Credentials grouped in different Teams.
It’s a little overwhelming at first, but once the initial structure is configured, you’ll
see the power and flexibility the workflow affords.

Let’s get started with our first project!

The first step is to make sure you have a test playbook you can run using AWX.
Generally, your playbooks should be stored in a source code repository, with AWX
configured to check out the latest version of the playbook from the repository and run
it. For this example, however, we will create a playbook in AWX’s default projects
directory located in /var/lib/awx/projects:

1. Log into the AWX web container: docker exec -it awx_web /bin/bash

2. Create the projects directory: mkdir /var/lib/awx/projects

3. Go into that directory: cd /var/lib/awx/projects

4. Create a new project directory: mkdir ansible-for-devops && cd ansible-for-devops

5. Create a new playbook file with vi (vi main.yml) in the new directory, and put
in the following:

1 ---

2 - hosts: all

3 gather_facts: no

4 connection: local

5

6 tasks:

7 - name: Check the date on the server.

8 command: date

Now, to reinforce my earlier statement about why it’s good to use a source repository
instead of manually managing playbooks, you have to do all five of those steps again

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 330

in the awx_task container. So go do that, starting by logging into the AWX task
container: docker exec -it awx_web /bin/bash.

If you insist on manually managing playbooks in the default
/var/lib/awx/projects path, then you can modify the volume
configuration in the docker-compose.yml file generated by the AWX
installer to mounting a local directory into both containers. But this is not
a common way to use Ansible and I wouldn’t recommend it!

Switch back to your web browser and get everything set up to run the test playbook
inside Ansible Tower’s web UI:

1. Create a new Organization, called ‘Ansible for DevOps’.
2. Add a new User to the Organization, named John Doe, with the email john-

doe@example.com, username johndoe, and password johndoe1234.
3. Create a new Team, called ‘DevOps Engineers’, in the ‘Ansible for DevOps’

Organization.
4. Add the johndoe user to the DevOps Engineers Team.
5. Under the Projects section, add a new Project. Set the ‘Name’ to Ansible for

DevOps Project, ‘Organization’ to Ansible for DevOps, ‘SCM Type’ to Manual,
and ‘Playbook Directory’ to ansible-for-devops (AWX automatically detects
all folders placed inside /var/lib/awx/projects, but you could also use an
alternate Project Base Path if you want to store projects elsewhere).

6. Under the Inventories section, add an Inventory. Set the ‘Name’ to AWX Local,
and ‘Organization’ set to Ansible for DevOps. Once the inventory is saved: 1.
Add a ‘Group’ with the Name localhost. Click on the group once it’s saved. 2.
Add a ‘Host’ with the Host Name 127.0.0.1.

New Credentials have a somewhat dizzying array of options, and offer
login and API key support for a variety of services, like SSH, AWS,
Rackspace, VMWare vCenter, and SCM systems. If you can login to a
system, AWX likely supports the login mechanism!

Now that we have all the structure for running playbooks configured, we need
only create a Template to run the playbook on the localhost and see whether we’ve

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 331

succeeded. Click on ‘Templates’, and create a new Job Template with the following
configuration:

• Name: Ansible for DevOps Job

• Job Type: Run
• Inventory: AWX Local

• Project: Ansible for DevOps Project

• Playbook: main.yml

Save the Job Template, then go back to the main AWX ‘Templates’ section.

Click the small Rocket ship button for the ‘Ansible for DevOps Job’ to start a job using
the template. You’ll be redirected to a Job status page, which provides live updates
of the job status, and then a summary of the playbook run when complete:

AWX job completed successfully!

The playbook’s output is logged to the web page in real-time. You can also stop a
running job, delete a job’s record, or relaunch a job with the same parameters using
the respective buttons on the job’s page.

The job’s dashboard page is very useful for giving an overview of how many hosts
were successful, how many tasks resulted in changes, and the timing of the different
parts of the playbook run.

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 332

Uninstalling AWX

After you’re finished trying out AWX, you can uninstall it using the following
process:

1. Go into the directory where the AWX installer created a Docker Compose
configuration: cd ∼/.awx/awxcompose

2. Shut down the Docker Compose environment: docker-compose down -v

3. Delete the entire AWX directory: rm -rf ∼/.awx

Other Tower Features of Note

In our walkthrough above, we used AWX to run a playbook on the local server;
setting up AWX or Tower to run playbooks on real-world infrastructure or other local
VMs is just as easy, and the tools Ansible Tower provides are very handy, especially
when working in larger team environments.

This book won’t walk through the entirety of Ansible Tower’s documentation, but a
few other features you should try out include:

• Setting up scheduled Job runs (especially with the ‘Check’ option instead of
‘Run’) for CI/CD.

• Configuring webhooks for Job Templates so you can trigger Job runs from your
SCM (e.g. ‘GitOps’).

• Integrating user accounts and Teamswith LDAP users and groups for automatic
team-based project management.

• Setting different levels of permissions for Users and Teams so certain users can
only edit, run, or view certain jobs within an Organization.

• Configuring Ansible Vault credentials to easily and automatically use Vault-
protected variables in your playbooks.

• Surveys, which allow users to add extra information based on a ‘Survey’ of
questions per job run.

• Smart Inventories and dynamic inventory integrations.
• Monitoring Tower with Prometheus and Grafana¹⁵⁴.

¹⁵⁴https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana

https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana
https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 333

Ansible Tower continues to improve rapidly, and is one of the best ways to run
Ansible Playbooks from a central instance with team-based access and extremely
detailed live and historical status reporting.

Tower Alternatives

Ansible Tower is purpose-built for use with Ansible playbooks, but there are many
other ways to run playbooks on your servers with a solid workflow. If price is a major
concern, and you don’t need all the bells and whistles Tower provides, you can use
other popular tools like Jenkins¹⁵⁵, Rundeck¹⁵⁶, or Go CI¹⁵⁷.

All these tools provide flexibility and security for running Ansible Playbooks, and
each one requires a different amount of setup and configuration before it will work
well for common usage scenarios. One of the most popular and long-standing CI
tools is Jenkins, so we’ll explore how to configure a similar Playbook run in Jenkins
next.

Jenkins CI

Jenkins is a Java-based open source continuous integration tool. It was forked from
the Hudson project in 2011, but has a long history as a robust build tool for almost
any software project.

Jenkins is easy to install and configure, with the Java SDK as its only requirement.
Jenkins runs on any modern OS, but for the purposes of this demonstration, we’ll
build a local VM using Vagrant, install Jenkins inside the VM using Ansible, then use
Jenkins to run an Ansible playbook.

Build a local Jenkins server with Ansible

Create a new directory for the Jenkins VM named jenkins. Inside the directory,
create a Vagrantfile to describe the machine and the Ansible provisioning to
Vagrant, with the following contents:

¹⁵⁵https://www.jenkins.io
¹⁵⁶https://www.rundeck.com/open-source
¹⁵⁷https://www.gocd.org

https://www.jenkins.io/
https://www.rundeck.com/open-source
https://www.gocd.org/
https://www.jenkins.io/
https://www.rundeck.com/open-source
https://www.gocd.org/

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 334

1 VAGRANTFILE_API_VERSION = "2"

2

3 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

4 config.vm.box = "geerlingguy/ubuntu2004"

5 config.vm.hostname = "jenkins.test"

6 config.vm.network :private_network, ip: "192.168.56.76"

7 config.ssh.insert_key = false

8

9 config.vm.provider :virtualbox do |v|

10 v.memory = 512

11 end

12

13 # Ansible provisioning.

14 config.vm.provision "ansible" do |ansible|

15 ansible.playbook = "provision.yml"

16 ansible.become = true

17 end

18 end

This Vagrantfile will create a newVM runningUbuntu, with the IP address 192.168.56.76
and the hostname jenkins.test. Go ahead and add an entry for 192.168.56.76

jenkins.test to your hosts file, and then create a new provision.yml playbook so
Vagrant can run it with Ansible (as described in the config.vm.provision block in
the Vagrantfile). Put the following in the provision.yml file:

1 ---

2 - hosts: all

3

4 vars:

5 ansible_install_method: pip

6 firewall_allowed_tcp_ports:

7 - "22"

8 - "8080"

9 jenkins_plugins:

10 - ansicolor

11

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 335

12 roles:

13 - geerlingguy.firewall

14 - geerlingguy.pip

15 - geerlingguy.ansible

16 - geerlingguy.java

17 - geerlingguy.jenkins

This playbook uses a set of roles from Ansible Galaxy to install all the required
components for our Jenkins CI server. To make sure you have all the required roles
installed on your host machine, add a requirements.yml file in the jenkins folder,
containing all the roles being used in the playbook:

1 ---

2 roles:

3 - name: geerlingguy.firewall

4 - name: geerlingguy.pip

5 - name: geerlingguy.ansible

6 - name: geerlingguy.java

7 - name: geerlingguy.jenkins

The geerlingguy.ansible role installs Ansible on the VM, so Jenkins can run Ansible
playbooks and ad-hoc commands. The geerlingguy.java role is a dependency of
geerlingguy.jenkins, and the geerlingguy.firewall role configures a firewall to
limit access on ports besides 22 (for SSH) and 8080 (Jenkins’ default port).

Finally, we tell the geerlingguy.jenkins role a set of plugins to install through the
jenkins_plugins variable; in this case, we just want the ansicolor plugin, which
gives us full color display in Jenkins’ console logs (so our Ansible playbook output is
easier to read).

There is an official Ansible plugin for Jenkins¹⁵⁸ which can be used to run
Ansible Ad-Hoc tasks and Playbooks, and may help you integrate Ansible
and Jenkins more easily.

To build the VM and run the playbook, do the following (inside the jenkins folder):

¹⁵⁸https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin

https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 336

1. Run ansible-galaxy install -r requirements.yml to install the required
roles.

2. Run vagrant up to build the VM and install and configure Jenkins.

After a few minutes, the provisioning should complete, and you should be able to
access Jenkins at http://jenkins.test:8080/ (if you configured the hostname in
your hosts file).

Create an Ansible playbook on the Jenkins server

It’s preferred to keep your playbooks and server configuration in a code repository
(e.g. Git or SVN), but for simplicity’s sake, this example requires a playbook stored
locally on the Jenkins server, similar to the earlier Ansible Tower example.

1. Log into the Jenkins VM: vagrant ssh

2. Go to the /opt directory: cd /opt

3. Create a new project directory: sudo mkdir ansible-for-devops && cd

ansible-for-devops

4. Create a new playbook file, main.yml, within the new directory, with the
following contents (use sudo to create the file, e.g. sudo vi main.yml):

1 ---

2 - hosts: 127.0.0.1

3 gather_facts: no

4 connection: local

5

6 tasks:

7 - name: Check the date on the server.

8 command: date

If you want, test the playbook while you’re logged in: ansible-playbook main.yml.

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 337

Create a Jenkins job to run an Ansible Playbook

With Jenkins running, configure a Jenkins job to run a playbook on the local server
with Ansible. Visit http://jenkins.test:8080/ and log in with username admin

and password admin (these are the defaults from the geerlingguy.jenkins role—you
should override these for anything besides local test environments!).

Once the page loads, click the ‘New Item’ link to create a new ‘Freestyle project’
with a title ‘ansible-local-test’. Click ‘OK’ and when configuring the job, and set the
following configuration:

• Under ‘Build Environment’, check the ‘Color ANSI Console Output’ option.
This allows Ansible’s helpful colored output to pass through the Jenkins console,
so it is easier to read during and after the run.

• Under ‘Build’, click ‘Add Build Step’, then choose ‘Execute shell’. In the
‘Command’ field, add the following code, which will run the local Ansible
playbook:

1 # Force Ansible to output jobs with color.

2 export ANSIBLE_FORCE_COLOR=true

3

4 # Run the local test playbook.

5 ansible-playbook /opt/ansible-for-devops/main.yml

Click ‘Save’ to save the ‘Ansible Local Test’ job, and on the project’s page, click the
‘Build Now’ link to start a build. After a few seconds, you should see a new item in
the ‘Build History’ block. Click on the (hopefully) blue circle to the left of ‘#1’, and
it will take you to the console output of the job. It should look something like this:

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 338

Jenkins job completed successfully!

This is a basic example, but hopefully it’s enough to show you how easy it is to
get at least some of your baseline CI/CD automation done using a free and open
source tool. Most of the more difficult aspects of managing infrastructure through
Jenkins surrounds the ability to manage SSH keys, certificates, and other credentials
through Jenkins, but there is already plenty of documentation surrounding these
things elsewhere online and in Jenkins documentation, so this will be left as an
exercise for the reader.

Summary

Tools like Ansible Tower provide a robust, repeatable, and accessible environment in
which to run your Ansible playbooks.

In a team-based environment, it’s especially important to have reliable ways to run
your Ansible playbooks that aren’t dependent on individual developers’ laptops!

Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD 339

__

/ The first rule of any technology used \

| in a business is that automation |

| applied to an efficient operation will |

| magnify the efficiency. The second is |

| that automation applied to an |

| inefficient operation will magnify the |

\ inefficiency. (Bill Gates) /

--

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 13 - Testing and CI for
Ansible Content
Before deploying any infrastructure changes, you should test the changes in a
non-production environment (just like you would with application releases). At a
minimum, you should have the ability to run a playbook in a local or development
environment to make sure it does what you expect.

Since all your infrastructure is defined in code, you can automate unit, functional,
and integration tests on your infrastructure, just like you do for your applications.

This chapter covers different levels of infrastructure testing, and highlights tools and
techniques that help you test and develop Ansible content.

Unit, Integration, and Functional Testing

When determining how you should test your infrastructure, you need to understand
the different kinds of testing, and then determine the kinds of testing on which you
should focus more effort.

Unit testing, when applied to applications, is testing of the smallest units of code
(usually functions or class methods). In Ansible, unit testing would typically apply
to individual playbooks. You could run individual playbooks in an isolated environ-
ment, but it’s often not worth the effort. What isworth your effort is at least checking
the playbook syntax, to make sure you didn’t just commit a YAML file that will break
an entire deployment because of a missing quotation mark or whitespace issue!

Integration testing, which is definitely more valuable when it comes to Ansible, is
the testing of small groupings of individual units of code, to make sure they work
correctly together. Breaking your infrastructure definition into many task-specific
roles and playbooks allows you to do this; if you’ve structured your playbooks so
they have no or limited dependencies, you could test each role individually in a fresh
virtual machine, before you use the role as part of a full infrastructure deployment.

Chapter 13 - Testing and CI for Ansible Content 341

Functional testing involves the whole shebang. Basically, you set up a complete
infrastructure environment, and then run tests against it to make sure everything was
successfully installed, deployed, and configured. Ansible’s own reporting is helpful
in this kind of testing, and there are external tools available to test infrastructure
even more deeply.

In this chapter’s discussion of testing, I’m considering onlyAnsible content,
such as the YAML that defines playbooks, roles, or collections. Unit,
integration, and functional testing for the Python code in Ansible plugins
and modules can require additional tools, like ansible-test.

It is often possible to perform all the testing you need on your own local worksta-
tion, using Virtual Machines (as demonstrated in earlier chapters), using tools like
VirtualBox or VMWare. And with most cloud services providing robust control APIs
and hourly billing, it’s inexpensive and just as fast to test directly on cloud instances
mirroring your production infrastructure!

I like to think of testing as a spectrum—just like most things in life, your project is
unique, and might not need to integrate all the techniques discussed in this chapter.
The following graphic is from a presentation I gave at AnsibleFest in 2018:

My ‘Ansible Testing Spectrum’

Chapter 13 - Testing and CI for Ansible Content 342

Each technique discussed in this chapter provides more value than the previous
one, but is also more complex and might not be worth the additional setup and
maintenance burden, depending on your playbook.

We’ll begin with the easiest and most basic tests, and progress to full-fledged
functional testing methods and test automation.

Debugging and Asserting

For most playbooks, testing configuration changes and the result of commands being
run as you go is all the testing you need. And having tests run during your playbook
runs using some of Ansible’s built-in utility modules means you have immediate
assurance the system is in the correct state.

If at all possible, you should try to bake all simple test cases (e.g. comparison and state
checks) into your playbooks. Ansible has three modules that simplify this process.

The debug module

When actively developing an Ansible playbook, or even for historical logging
purposes (e.g. if you’re runningAnsible playbooks using Tower or another CI system),
it’s often handy to print values of variables or output of certain commands during
the playbook run.

For this purpose, Ansible has a debug module, which prints variables or messages
during playbook execution.

As an extremely basic example, here are two of the ways I normally use debug while
building a playbook:

Chapter 13 - Testing and CI for Ansible Content 343

1 ---

2 - hosts: 127.0.0.1

3 gather_facts: no

4 connection: local

5

6 tasks:

7 - name: Register the output of the 'uptime' command.

8 command: uptime

9 register: system_uptime

10

11 - name: Print the registered output of the 'uptime' command.

12 debug:

13 var: system_uptime.stdout

14

15 - name: Print a message if a command resulted in a change.

16 debug:

17 msg: "Command resulted in a change!"

18 when: system_uptime is changed

Running this playbook gives the following output:

$ ansible-playbook debug.yml

PLAY [127.0.0.1] **

TASK: [Register the output of the 'uptime' command.] ****************

changed: [127.0.0.1]

TASK [Print the registered output of the 'uptime' command.] *********

ok: [127.0.0.1] => {

"system_uptime.stdout":

"20:55 up 7:33, 4 users, load averages: 0.95 1.36 1.43"

}

TASK [Print a message if a command resulted in a change.] ***********

ok: [127.0.0.1] => {

Chapter 13 - Testing and CI for Ansible Content 344

"msg": "Command resulted in a change!"

}

nge!"

}

PLAY RECAP **

127.0.0.1 : ok=3 changed=1 unreachable=0 failed=0

Debug messages are helpful when actively debugging a playbook or when you need
extra verbosity in the playbook’s output, but if you need to perform an explicit test
on some variable, or bail out of a playbook for some reason, Ansible provides the
fail module, and its more terse cousin, assert.

The fail and assert modules

Both fail and assert, when triggered, will abort the playbook run, and the main
difference is in the simplicity of their usage and what is output during a playbook
run. To illustrate, let’s look at an example:

1 ---

2 - hosts: 127.0.0.1

3 gather_facts: no

4 connection: local

5

6 vars:

7 should_fail_via_fail: true

8 should_fail_via_assert: false

9 should_fail_via_complex_assert: false

10

11 tasks:

12 - name: Fail if conditions warrant a failure.

13 fail:

14 msg: "There was an epic failure."

15 when: should_fail_via_fail

16

Chapter 13 - Testing and CI for Ansible Content 345

17 - name: Stop playbook if an assertion isn't validated.

18 assert:

19 that: "should_fail_via_assert != true"

20

21 - name: Assertions can have contain conditions.

22 assert:

23 that:

24 - should_fail_via_fail != true

25 - should_fail_via_assert != true

26 - should_fail_via_complex_assert != true

Switch the boolean values of should_fail_via_fail, should_fail_via_assert, and
should_fail_via_complex_assert to trigger each of the three fail/assert tasks, to
see how they work.

A fail task will be reported as skipped if a failure is not triggered, whereas an assert
task which passes will show as an ok task with an inline message in Ansible’s default
output:

TASK [Assertions can have contain conditions.] ********************

ok: [default] => {

"changed": false,

"msg": "All assertions passed"

}

For most test cases, debug, fail, and assert are all you need to ensure your
infrastructure is in the correct state during a playbook run.

Linting YAML with yamllint

Once you have a playbook written, it’s a good idea to make sure the basic YAML
syntax is correct. YAML parsers can be forgiving, but many of the most common
errors in Ansible playbooks, especially for beginners, is whitespace issues.

yamllint¹⁵⁹ is a simple YAML lint tool which can be installed via Pip:

¹⁵⁹https://yamllint.readthedocs.io/en/stable/

https://yamllint.readthedocs.io/en/stable/
https://yamllint.readthedocs.io/en/stable/

Chapter 13 - Testing and CI for Ansible Content 346

pip3 install yamllint

Let’s build an example playbook, and lint it to see if there are any errors:

1 - hosts: localhost

2 gather_facts: no

3 connection: local

4

5 tasks:

6 - name: Register the output of the 'uptime' command.

7 command: uptime

8 register: system_uptime # comment

9

10 - name: Print the registered output of the 'uptime' command.

11 debug:

12 var: system_uptime.stdout

If you have yamllint installed, you can run it on any YAML files in the current
directory (and subdirectories, recursively), by passing the path . to the command.
Let’s do that and see the output:

$ yamllint .

./lint-example.yml

1:1 warning missing document start "---" (document-start)

2:17 warning truthy value should be one of [false, true] (truthy)

7:22 error trailing spaces (trailing-spaces)

8:31 warning too few spaces before comment (comments)

12:8 error wrong indentation: expected 8 but found 7 (indentation)

While it might seem nitpicky at first, over time you realize how important it is to use
a specific style and stick with it. It looks better, and can help prevent mistakes from
creeping in due to indentation, whitespace, or structural issues.

In this particular case, we can fix some of the errors quickly:

• Add a yaml document start indicator (---) at the top of the playbook.

Chapter 13 - Testing and CI for Ansible Content 347

• Delete the extra space on the command line.
• Add an extra space before the # comment.
• Make sure the var line is indented one more space.

But what about the ‘truthy value’ warning? In many Ansible examples, yes or no are
used instead of true and false. We can allow that by customizing yamllint with a
configuration file.

Create a file in the same directory named .yamllint, with the following contents:

1 ---

2 extends: default

3

4 rules:

5 truthy:

6 allowed-values:

7 - 'true'

8 - 'false'

9 - 'yes'

10 - 'no'

Assuming you fixed the other errors in the playbook, and left gather_facts: no,
running yamllint . again should yield no errors.

Performing a --syntax-check

Syntax checking is similarly straightforward, and only requires a few seconds for
even larger, more complex playbooks with dozens or hundreds of includes.

When you run a playbook with --syntax-check, the plays are not run; instead,
Ansible loads the entire playbook statically and ensures everything can be loaded
without a fatal error. If you are missing an imported task file, misspelled a module
name, or are supplying a module with invalid parameters, --syntax-check will
quickly identify the problem.

Chapter 13 - Testing and CI for Ansible Content 348

Alongwith yamllint, it’s common to include an ansible-playbook my-playbook.yml

--syntax-check in your basic CI tests, and it’s also good to add a syntax check in a
pre-commit hook¹⁶⁰ if your playbook is in a Git repository.

Because syntax checking only statically loads a playbook, dynamic in-
cludes (like those loaded with include_tasks) and variables can’t be
validated. Because of this, more integration testing is required to guarantee
an entire playbook can be run.

Linting Ansible content with ansible-lint

In addition to linting structural YAML issues with yamllint, Ansible tasks and
playbooks can be linted using ansible-lint¹⁶¹. Many Ansible best practices and a
preferred task style can be enforced via linting.

Let’s take the following playbook, for example (called main.yml):

1 ---

2 - hosts: localhost

3 gather_facts: false

4 connection: local

5

6 tasks:

7 - shell: uptime

8 register: system_uptime

9

10 - name: Print the registered output of the 'uptime' command.

11 debug:

12 var: system_uptime.stdout

It looks straightforward, and the YAML syntax passes yamllint without a problem.

But there are some aspects to this playbook which could be improved. Let’s see if
ansible-lint can highlight them. Install it via Pip with:

¹⁶⁰https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
¹⁶¹https://github.com/ansible/ansible-lint

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://github.com/ansible/ansible-lint
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://github.com/ansible/ansible-lint

Chapter 13 - Testing and CI for Ansible Content 349

pip3 install ansible-lint

Then run it on the playbook, and observe the output:

$ ansible-lint main.yml

[301] Commands should not change things if nothing needs doing

main.yml:6

Task/Handler: shell uptime

[305] Use shell only when shell functionality is required

main.yml:6

Task/Handler: shell uptime

[502] All tasks should be named

main.yml:6

Task/Handler: shell uptime

Each of the suggestions corresponds to a ‘rule’; all the default rules¹⁶² are listed in
Ansible Lint’s documentation.

To fix these issues you would need to do the following:

• Add a name to the uptime task, to resolve the 502 rule violation.
• Use the commandmodule instead of shell for the uptime task, to resolve the 305
rule violation. You should only use the shellmodule when you need advanced
capabilities like pipes or redirection.

• Add changed_when: false to the uptime task, to resolve the 301 rule violation.
Since the task doesn’t change anything on the system, it should be marked as
such, to avoid breaking idempotency.

Most of the rules are straightforward, but you might choose to ignore some, if you
have good reason to do something in opposition to the default rules.

As with yamllint, you can add a file named .ansible-lint, providing configuration
specific to your project. See the ansible-lint Configuration File documentation¹⁶³
for available options.

¹⁶²https://ansible.readthedocs.io/projects/lint/rules/
¹⁶³https://ansible.readthedocs.io/projects/lint/configuring/#ansible-lint-configuration

https://ansible.readthedocs.io/projects/lint/rules/
https://ansible.readthedocs.io/projects/lint/configuring/#ansible-lint-configuration
https://ansible.readthedocs.io/projects/lint/rules/
https://ansible.readthedocs.io/projects/lint/configuring/#ansible-lint-configuration

Chapter 13 - Testing and CI for Ansible Content 350

Automated testing and development with
Molecule

Everything to this point covers static testing. But the proof is in the pudding—that
is, you can’t really verify a playbook works until you actually run it.

But it would be dangerous to run your playbook against your production infrastruc-
ture, especially when modifying it or adding new functionality.

I started out running one-off Virtual Machines running in VirtualBox or Amazon
EC2 to test my playbooks, but this is tiresome. I would have to do the following
every time I wanted to test a playbook:

1. Build a new VM.
2. Configure SSH so I can connect to it.
3. Set up an inventory so the playbook connects to the VM (and not production!).
4. Run my Ansible playbook against the VM.
5. Test and validate my playbook does what it’s supposed to.
6. Delete the VM.

Vagrant can help with this process somewhat, and it is well-suited to the task,
but Vagrant can be a little slow, and it doesn’t work well in CI or lightweight
environments.

So I started maintaining a shell script which did many of the above steps automati-
cally, using Docker containers, and I could run playbooks and tests in CI or locally.
But this was fragile, required a lot of work to maintain in different CI environments.
I also realized I was maintaining complex shell scripts to test my simple Ansible
automation playbooks—there had to be a simpler way!

And there was: Molecule¹⁶⁴.
¹⁶⁴https://ansible.readthedocs.io/projects/molecule/

https://ansible.readthedocs.io/projects/molecule/
https://ansible.readthedocs.io/projects/molecule/

Chapter 13 - Testing and CI for Ansible Content 351

Molecule’s logo

Molecule is a lightweight, Ansible-based tool to help in the development and testing
of Ansible playbooks, roles, and collections.

At its most basic level, Molecule does all the six steps identified above, and adds
on extra functionality like multiple scenarios, multiple backends, and configurable
verification methods.

And the best part? Everything in Molecule is controlled by Ansible playbooks!

Molecule is easy to install:

pip3 install molecule

Testing a role with Molecule

Originally, Molecule was purpose-built for testing Ansible roles. As such, it has built-
in role scaffold functionality, which sets up a role just like the ansible-galaxy role

init command does, but with a Molecule configuration built-in.

Inside any directory, run the following command to create a new role:

molecule init role my.test

If you cd into the new test directory, you’ll see the standard role structure generated
by ansible-galaxy, but with one notable addition: the molecule directory.

This directory’s presence indicates there are one ormoreMolecule scenarios available
for testing and development purposes. Let’s take a look at what’s inside the default
scenario:

Chapter 13 - Testing and CI for Ansible Content 352

molecule/

default/

INSTALL.rst

converge.yml

molecule.yml

verify.yml

The INSTALL file provides instructions for setting up Molecule to run your tests
correctly.

The molecule.yml file configures Molecule and tells it how to run the entire build
and test process. We’ll cover the file in more depth later.

The converge.yml file is an Ansible playbook, and Molecule runs it on the test
environment immediately after setup is complete. For basic role testing, the Converge
playbook just includes the role (in this case, myrole), nothing more.

The verify.yml file is another Ansible playbook, which is run afterMolecule runs the
converge.yml playbook and tests idempotence. It is meant for verification tests, e.g.
ensuring a web service your role installs responds properly, or a certain application
is configured correctly.

Assuming you have Docker installed on your computer, you can runMolecule’s built-
in tests on the default role immediately:

molecule test

The test command runs through the full gamut of Molecule’s capabilities, including
setting up a test environment, running any configured lint tools, installing any
Ansible Galaxy requirements, running the converge playbook, running the verify

playbook, and then tearing down the test environment (regardless of tests passing or
failing).

You can perform a subset of Molecule’s tasks using other options, for example:

molecule converge

This will run through all the same steps as the test command, but will stop execution
after the converge playbook runs, and leave the test environment running.

Chapter 13 - Testing and CI for Ansible Content 353

This is extremely useful for role development and debugging.

For automation development, I usually have a workflow like the following:

1. Create a new role with a Molecule test environment.
2. Start working on the tasks in the role.
3. Add a fail: task where I want to set a ‘breakpoint’, and run molecule converge.
4. After the playbook runs and hits my fail task, log into the environment with

molecule login.
5. Explore the environment, check my configuration files, do some extra sleuthing

if needed.
6. Go back to my role, work on the rest of the role’s automation tasks.
7. Run molecule converge again.
8. (If there are any issues or I get my environment in a broken state, run molecule

destroy to wipe away the environment then molecule converge to bring it
back again.)

9. Once I feel satisfied, run molecule test to run the full test cycle and make sure
my automation works flawlessly and with idempotence.

For debugging, I’ll often just run molecule converge, see where my automation
breaks, log in with molecule login to figure out the problem (and then fix it), then
run molecule converge again until it starts working.

When you’re finished with your development session, tell Molecule to tear down the
environment using:

molecule destroy

Testing a playbook with Molecule

Molecule’s useful for testing more than just roles. I regularly use Molecule to test
playbooks, collections, and even Kubernetes Operators!

Let’s say I have a playbook that sets up an Apache server, with the following contents
in main.yml:

Chapter 13 - Testing and CI for Ansible Content 354

- name: Install Apache.

hosts: all

become: true

vars:

apache_package: apache2

apache_service: apache2

handlers:

- name: restart apache

ansible.builtin.service:

name: "{{ apache_service }}"

state: restarted

pre_tasks:

- name: Override Apache vars for Red Hat.

ansible.builtin.set_fact:

apache_package: httpd

apache_service: httpd

when: ansible_os_family == 'RedHat'

tasks:

- name: Ensure Apache is installed.

ansible.builtin.package:

name: "{{ apache_package }}"

state: present

- name: Copy a web page.

ansible.builtin.copy:

content: |

<html>

<head><title>Hello world!</title></head>

<body>Hello world!</body>

</html>

dest: "/var/www/html/index.html"

Chapter 13 - Testing and CI for Ansible Content 355

mode: 0664

notify: restart apache

- name: Ensure Apache is running and starts at boot.

ansible.builtin.service:

name: "{{ apache_service }}"

state: started

enabled: true

Because I want to make sure this playbook works on both of the platforms I support—
Debian and Rocky Linux, in this case—I want to make sure my Molecule tests cover
both platforms.

So first, run molecule init scenario to initialize a default Molecule scenario in the
playbook’s folder:

$ molecule init scenario

--> Initializing new scenario default...

Initialized scenario in ~/playbook/molecule/default successfully.

Since we’re going to test a playbook and not a role, we need to clean up some files
and make a few changes.

Go ahead and delete the INSTALL.rst file. Then open the converge.yml file, and
delete the existing tasks: section. Make the Converge play prepare the environment
in its tasks: section, then run the main.yml playbook by importing it:

1 ---

2 - name: Converge

3 hosts: all

4

5 tasks:

6 - name: Update apt cache (on Debian).

7 ansible.builtin.apt:

8 update_cache: true

9 cache_valid_time: 3600

10 when: ansible_os_family == 'Debian'

Chapter 13 - Testing and CI for Ansible Content 356

11

12 - import_playbook: ../../main.yml

At this point, you can try testing the playbook with Molecule. As I mentioned earlier,
I like to use molecule converge when developing, so I can see where something
breaks, then fix it, then run molecule converge again to re-run the playbook.

$ molecule converge

--> Test matrix

└── default

├── dependency

├── create

├── prepare

└── converge

--> Scenario: 'default'

...

TASK [Ensure Apache is running and starts at boot.] ***********

fatal: [instance]: FAILED! => {"changed": false, "msg": "Could

not find the requested service httpd: "}

RUNNING HANDLER [restart apache] ******************************

PLAY RECAP **

instance : ok=5 changed=2 unreachable=0 failed=1 skipped=1

Uh oh, something definitely went wrong if the Apache service can’t be found!

This playbook is pretty simple, though, and it doesn’t seem like there are any errors
with it. We should debug this problem by logging into the test environment, and
checking out what’s wrong with the httpd service:

Chapter 13 - Testing and CI for Ansible Content 357

$ molecule login

[root@instance /]# systemctl status httpd

Failed to get D-Bus connection: Operation not permitted

Ah, it looks like systemd is not working properly. And, rather than lead you down
a rabbit hole of trying to debug systemd inside a Docker container, and how to get
everything working properly so you can test services running inside containers, I’ll
skip to the end and show you how I test my playbooks correctly when they manage
services like httpd.

First, clean up the existing environment by exiting the running instance and
destroying it:

[root@instance /]# exit

$ molecule destroy

Adjusting Molecule to use more flexible test containers

Molecule allows almost infinite flexibility, when it comes to configuring the test
environment. In our case, we need to be able to test services running in Docker
containers, meaning the Docker containers need to be able to run an init system
(in this case, systemd).

We also want to test Debian in addition to the default rockylinux8 container
Molecule uses by default, so open the molecule.yml file and edit the platforms

section to use a slightly different Docker configuration:

Chapter 13 - Testing and CI for Ansible Content 358

1 platforms:

2 - name: instance

3 image: "geerlingguy/docker-${MOLECULE_DISTRO:-rockylinux8}-ansible:\

4 latest"

5 command: ""

6 volumes:

7 - /sys/fs/cgroup:/sys/fs/cgroup:rw

8 cgroupns_mode: host

9 privileged: true

10 pre_build_image: true

This configuration makes four changes to the default Molecule file: one change (the
image), and three additions:

• Set the image to a dynamically-defined image that I maintain, which has Python
andAnsible installed on it, as well as a properly configured systemd, so I can run
services inside the container. Molecule allows bash-style variables and defaults,
so I set ${MOLECULE_DISTRO:-rockylinux8} in the image name. This will allow
substitution for other distros, like Debian, later.

• Override the command Molecule sets for the Docker container, so the container
image uses its own preconfigured COMMAND, which in this case starts the systemd
init system and keeps the container running.

• Add a necessary volume mount to allow processes to be managed inside the
container, as well as setting the cgroupns_mode to host so Docker will work
with systemd support.

• Set the privileged flag on the container, so systemd can initialize properly.

The privileged flag should be used with care; don’t run Docker images
or software you don’t trust using privileged, because that mode allows
software running inside the Docker image to run as if it were running on
the host machine directly, bypassing many of the security benefits of using
containers. It is convenient but potentially dangerous. If necessary, consider
maintaining your own testing container images if you need to run with
privileged and wish to test with Docker.

Chapter 13 - Testing and CI for Ansible Content 359

Now, if you run molecule converge or molecule test, the entire playbook should
succeed, and idempotence should also pass.

The last step is to make sure the playbook also runs correctly on Debian-based
systems. Since there exists a geerlingguy/docker-debian10-ansible container (see a
full list of the Docker Ansible test containers I maintain¹⁶⁵), you can run the Molecule
tests under that operating system as well:

$ MOLECULE_DISTRO=debian10 molecule test

...

RUNNING HANDLER [restart apache] ******************************

PLAY RECAP **

instance : ok=7 changed=4 unreachable=0 failed=0 skipped=1

Verifying a playbook with Molecule

Let’s add onemore thing: validation that Apache is actually servingweb traffic! Open
the verify.yml playbook, and add a task to check whether Apache serves web traffic:

1 ---

2 - name: Verify

3 hosts: all

4

5 tasks:

6 - name: Verify Apache is serving web requests.

7 ansible.builtin.uri:

8 url: http://localhost/

9 status_code: 200

Run molecule test again, and make sure the validation task succeeds:

¹⁶⁵https://ansible.jeffgeerling.com/#container-images-testing

https://ansible.jeffgeerling.com/#container-images-testing
https://ansible.jeffgeerling.com/#container-images-testing

Chapter 13 - Testing and CI for Ansible Content 360

$ molecule test

...

TASK [Verify Apache is serving web requests.] *****************

ok: [instance]

PLAY RECAP **

instance : ok=2 changed=0 unreachable=0 failed=0 skipped=0

When developing or debugging withMolecule, you can run only the verify step using
molecule verify.

As I’ve stated earlier, you could put this test in the Ansible playbook itself, so the test
is always run as part of your automation. But the structure of your tests may dictate
adding extra validation into Molecule’s validate.yml playbook, like we did here.

Adding lint configuration to Molecule

As a final step, it’s good to make sure your code follows a consistent code style, so
we can enforce it with Molecule by adding a lint configuration to the molecule.yml
file:

6 lint: |

7 set -e

8 yamllint .

9 ansible-lint

You can add the lint configuration to any part of the Molecule configuration; you
just need to make sure the lint key is one of the top-level keys.

Now you can run all configured lint tools with molecule lint, instead of running
yamllint and ansible-lint separately. If you need to override any lint rules, you
can add a .yamllint or .ansible-lint file alongside your playbook in the project’s
root folder.

Molecule Summary

Molecule is a simple but flexible tool used for testing Ansible roles, playbooks, and
collections. The options presented in these examples are only a small subset of

Chapter 13 - Testing and CI for Ansible Content 361

what’s possible using Molecule. Later, we’ll configure Molecule to test a role using
Continuous Integration, to help your playbooks always be tested and working.

You can find a complete example of this Molecule playbook configuration in this
book’s GitHub repository: Molecule Example¹⁶⁶.

Running your playbook in check mode

One step beyond local integration testing is running your playbook with --check,
which runs the entire playbook on your live infrastructure, but without performing
any changes. Instead, Ansible highlights tasks that would’ve resulted in a change to
show what will happen when you actually run the playbook later.

This is helpful for two purposes:

1. To prevent ‘configuration drift’, where a server configuration may have drifted
away from your coded configuration. This could happen due to human inter-
vention or other factors. But it’s good to discover configuration drift without
forcefully changing it.

2. To make sure changes you make to a playbook that shouldn’t break idem-
potency don’t, in fact, break idempotency. For example, if you’re changing
a configuration file’s structure, but with the goal of maintaining the same
resulting file, running the playbook with --check alerts you when you might
accidentally change the live file as a result of the playbook changes. Time to fix
your playbook!

When using --check mode, certain tasks may need to be forced to run to ensure the
playbook completes successfully: (e.g. a command task that registers variables used in
later tasks). You can set check_mode: no to do this:

¹⁶⁶https://github.com/geerlingguy/ansible-for-devops/tree/master/molecule

https://github.com/geerlingguy/ansible-for-devops/tree/master/molecule
https://github.com/geerlingguy/ansible-for-devops/tree/master/molecule

Chapter 13 - Testing and CI for Ansible Content 362

- name: A task that runs all the time, even in check mode.

command: mytask --option1 --option2

register: my_var

check_mode: no

For even more detailed information about what changes would occur, add the --diff
option, and Ansible will output changes thatwould’ve beenmade to your servers line-
by-line. This option produces a lot of output if check mode makes a lot of changes,
so use it conservatively unless you want to scroll through a lot of text!

You can add conditionals with check_mode just like you can with when

clauses, though most of the time you will probably just use yes or no.

If you’ve never run a playbook with --check on an existing production
instance, it might not be a good idea to blindly try it out. Some modules
and playbooks are not written in a way that works well in check mode, and
it can lead to problems. It’s best to start using check mode testing early on,
and fix small problems as they arise.

Automated testing on GitHub using GitHub
Actions

GitHub Actions is one of many Continuous Integration (CI) and Continuous Deploy-
ment (CD) tools. Others like it include Travis CI, Circle CI, Drone, Jenkins, and Zuul.

I often choose to use the CI tool with the least amount of friction when integrating
with my source repository, and because much of my code is hosted on GitHub,
GitHub Actions is the easiest to implement! But if, for example, you use GitLab, it
would be easier to use GitLab CI.

Following GitHub Actions’ setup guide, the first step in setting up an Actions
workflow is to create a workflow file in your repository¹⁶⁷.

¹⁶⁷https://help.github.com/en/actions/configuring-and-managing-workflows/configuring-a-workflow#creating-a-
workflow-file

https://help.github.com/en/actions/configuring-and-managing-workflows/configuring-a-workflow#creating-a-workflow-file
https://help.github.com/en/actions/configuring-and-managing-workflows/configuring-a-workflow#creating-a-workflow-file
https://help.github.com/en/actions/configuring-and-managing-workflows/configuring-a-workflow#creating-a-workflow-file

Chapter 13 - Testing and CI for Ansible Content 363

In this book’s example, we’ll work from the same Molecule playbook example we
created earlier. This example presumes you have a playbook like the one created
earlier in the root directory of a code repository that is on GitHub.

Create a new .github directory alongside the playbook, and inside that directory,
create a workflows directory. Finally, create a workflow file named ci.yml inside the
workflows directory.

You should have a directory structure like the following:

myproject/

.github/

workflows/

ci.yml

main.yml

As with most other operations tools these days, GitHub Actions uses YAML for its
configuration syntax, so we’ll create a ‘CI’ (for ‘Continuous Integration’) workflow.
Open the ci.yml file and add a name for the workflow:

1 ---

2 name: CI

The first thing you should do in a GitHub Actions workflow is define when the
workflow should run. By default, it will run on every branch and pull request, but
for most of my projects, I like to have it run only on pushes and merges to the master
branch, as well as on any pull_request:

3 'on':

4 pull_request:

5 push:

6 branches:

7 - master

The syntax options for the on property and everything else you can put in
a workflow are available in GitHub’s documentation: Workflow syntax for
GitHub Actions¹⁶⁸.

¹⁶⁸https://help.github.com/en/articles/workflow-syntax-for-github-actions

https://help.github.com/en/articles/workflow-syntax-for-github-actions
https://help.github.com/en/articles/workflow-syntax-for-github-actions
https://help.github.com/en/articles/workflow-syntax-for-github-actions

Chapter 13 - Testing and CI for Ansible Content 364

Next, you define a list of jobs to run in the workflow.

9 jobs:

10

11 test:

12 name: Molecule

13 runs-on: ubuntu-latest

This is a job with the name Molecule (that’s the label that will show up in GitHub’s
interface), and it will run on the latest version of GitHub Actions’ Ubuntu build
environment. You can currently run jobs on a few different platforms¹⁶⁹, including
Windows, macOS, and Ubuntu Linux.

We also want to define a matrix of Linux distributions to test against; earlier, we set
up the playbook to be testable with either rockylinux8 or debian10, so we can add
a test matrix under the jobs.test.strategy.matrix key:

14 strategy:

15 matrix:

16 - distro: rockylinux8

17 - distro: debian10

GitHub Actions will run a job once for each of the defined options in the build
matrix—in our case, one time with a distro variable set to rockylinux8, and one
time with distro set to debian10.

Finally, we come to the meat of the workflow job, the steps that run once the
environment is ready:

¹⁶⁹https://help.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idruns-on

https://help.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idruns-on
https://help.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idruns-on

Chapter 13 - Testing and CI for Ansible Content 365

20 steps:

21 - name: Check out the codebase.

22 uses: actions/checkout@v2

23

24 - name: Set up Python 3.

25 uses: actions/setup-python@v2

26 with:

27 python-version: '3.x'

28

29 - name: Install test dependencies.

30 run: pip3 install ansible molecule molecule-plugins[docker] yam\

31 llint ansible-lint

32

33 - name: Run Molecule tests.

34 run: molecule test

35 env:

36 PY_COLORS: '1'

37 ANSIBLE_FORCE_COLOR: '1'

38 MOLECULE_DISTRO: ${{ matrix.distro }}

The first two steps set up the build environment using community-supported GitHub
Actions to check out the repository code into the current directory, then set up
Python.

The third step (these look a lot like Ansible tasks, don’t they?) runs a command, which
installs all our test dependencies via pip3.

The final step runs molecule test, and passes in three environment variables:

• PY_COLORS: '1': This forces Molecule to use colorized output in the CI environ-
ment. Without it, all the output would be white text on a black background.

• ANSIBLE_FORCE_COLOR: '1': This does the same thing as PY_COLORS, but for
Ansible’s playbook output.

• MOLECULE_DISTRO: ${{ matrix.distro }}: This sets an environment variable
with the current distro being run; so once for rockylinux8 and another time
for debian10.

Chapter 13 - Testing and CI for Ansible Content 366

That’s all there is to a GitHub Actions workflow! You can add it to your GitHub
repository, and assuming you have available build minutes, GitHub will run this
workflow, once for each of the distros in the matrix, every time you create or update
a PR, or merge or push to the master branch.

Here’s what it looks like when a build runs successfully:

GitHub Actions CI workflow results

You can also put a ‘CI status’ badge in your project’s README file (or anywhere
else!) to see the current build status at a glance. To do so, go to the ‘Actions’ tab on
GitHub, click on the workflow name (in this case, ‘CI’), and then click the ‘Create
status badge’ button. It will allow you to choose options for a status badge you can
place anywhere to quickly see the workflow’s current status.

Chapter 13 - Testing and CI for Ansible Content 367

A CI status badge displays project health at a glance

The example in this chapter is actively in use in this book’s GitHub repository:
Ansible for DevOps GitHub Actions CI workflow¹⁷⁰.

Automated testing in other CI environments

Molecule has extended documentation with examples for integration with many
different CI environments, like Travis CI, GitLab CI, Jenkins, and Tox; see the
Molecule Continuous Integration¹⁷¹ documentation for more examples.

Real-world examples

This style of testing is integrated into many of my Ansible projects; here are a few
examples using Molecule in various CI environments:

• https://github.com/geerlingguy/ansible-role-java
• https://github.com/geerlingguy/ansible-collection-k8s
• https://github.com/ansible-collections/community.kubernetes

Functional testing using serverspec or
testinfra

Serverspec¹⁷² is a tool to help automate server tests using RSpec tests, which use a

¹⁷⁰https://github.com/geerlingguy/ansible-for-devops/blob/master/.github/workflows/ci.yml
¹⁷¹https://ansible.readthedocs.io/projects/molecule/ci/
¹⁷²http://serverspec.org/

https://github.com/geerlingguy/ansible-for-devops/blob/master/.github/workflows/ci.yml
https://ansible.readthedocs.io/projects/molecule/ci/
http://serverspec.org/
https://github.com/geerlingguy/ansible-for-devops/blob/master/.github/workflows/ci.yml
https://ansible.readthedocs.io/projects/molecule/ci/
http://serverspec.org/

Chapter 13 - Testing and CI for Ansible Content 368

Ruby-like DSL to ensure your server configuration matches your expectations. In a
sense, it’s another way of building well-tested infrastructure.

Testinfra¹⁷³ is a very similar tool, written in Python with a Python-based DSL.

Serverspec and Testinfra tests can be run locally, via SSH, through Docker’s APIs,
or through other means, without the need for an agent installed on your servers,
so they’re lightweight tools for testing your infrastructure (just like Ansible is a
lightweight tool for managing your infrastructure).

There’s a lot of debate over whether well-written Ansible playbooks themselves
(especially along with the dry-run --checkmode, and Molecule for CI) are adequate
for well-tested infrastructure, but many teams are more comfortable maintaining
infrastructure tests separately (especially if the team is already familiar with another
tool!).

Consider this: a truly idempotent Ansible playbook is already a great testing tool if
it uses Ansible’s robust core modules and fail, assert, wait_for and other tests to
ensure a specific state for your server. If you use Ansible’s user module to ensure a
given user exists and is in a given group, and run the same playbook with --check

and get ok for the same task, isn’t that a good enough test your server is configured
correctly?

This book will not provide a detailed guide for using Serverspec, but here are
resources in case you’d like to use one of them:

• A brief introduction to server testing with Serverspec¹⁷⁴
• Testing infrastructure with serverspec¹⁷⁵

Summary

Tools like Molecule help develop, test, and run playbooks regularly and easily, both
locally and in CI environments. In addition the information contained in this chapter,
read through the Testing Strategies¹⁷⁶ documentation in Ansible’s documentation for
a comprehensive overview of infrastructure testing and Ansible.

¹⁷³https://testinfra.readthedocs.io/en/latest/
¹⁷⁴https://www.debian-administration.org/article/703/A_brief_introduction_to_server-testing_with_serverspec
¹⁷⁵https://vincent.bernat.ch/en/blog/2014-serverspec-test-infrastructure
¹⁷⁶https://docs.ansible.com/ansible/latest/reference_appendices/test_strategies.html

https://testinfra.readthedocs.io/en/latest/
https://www.debian-administration.org/article/703/A_brief_introduction_to_server-testing_with_serverspec
https://vincent.bernat.ch/en/blog/2014-serverspec-test-infrastructure
https://docs.ansible.com/ansible/latest/reference_appendices/test_strategies.html
https://testinfra.readthedocs.io/en/latest/
https://www.debian-administration.org/article/703/A_brief_introduction_to_server-testing_with_serverspec
https://vincent.bernat.ch/en/blog/2014-serverspec-test-infrastructure
https://docs.ansible.com/ansible/latest/reference_appendices/test_strategies.html

Chapter 13 - Testing and CI for Ansible Content 369

__

/ Never ascribe to malice that which can \

| adequately be explained by |

\ incompetence. (Napoleon Bonaparte) /

--

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 14 - Automating HTTPS
and TLS Certificates
Today’s application environment almost always requires the use of HTTP (and
HTTPS) for certain traffic—end users interacting with a website, microservices
communicating with each other internally or via the public Internet, or external APIs
interacting with your apps.

HTTPS was originally used only for sensitive transactions, like banking transactions
or secure web forms. It also used to require extra server CPU to encrypt data.
But today, when Google boosts search results for HTTPS-only sites, and when
processors barely show a differencewith encrypted or unencrypted traffic, it’s almost
universally understood that all HTTP services should be served via https://.

Traditionally, one blocker to using HTTPS everywhere was certificates were difficult
to acquire, manage, and renew. And they were also expensive!

Now, between Let’s Encrypt’s free certificates, more affordable wildcard certs, and
universal Server Name Indication (SNI) support, there is almost never an excuse not
to use HTTPS…

Except, that is, for the fact certificate management has been tricky to automate. This
chapter will show how Ansible solves this last problem by managing certificates and
securing all your HTTP traffic!

Generating Self-Signed Certificates with
Ansible

Whenever I’m building and testing a new server configuration that requires TLS
connections (typically HTTPS traffic over port 443), I need to use one or more valid
certificates which can be accepted by a browser user, or by something like curl, so I
can verify my TLS configuration is correct.

Chapter 14 - Automating HTTPS and TLS Certificates 371

Ansible makes generating self-signed certificates easy. There are four openssl_*

crypto-related modules useful in generating certificates:

• openssl_certificate - Generate and/or check OpenSSL certificates
• openssl_csr - Generate OpenSSL Certificate Signing Request (CSR)
• openssl_privatekey - Generate OpenSSL private keys
• openssl_publickey - Generate an OpenSSL public key from its private key

In order to use these modules, you need OpenSSL installed, and also one extra Python
dependency used by Ansible to interact with OpenSSL, the pyOpenSSL library.

Here’s a quick example of the tasks required to generate a self-signed cert:

- name: Ensure directory exists for local self-signed TLS certs.

file:

path: /etc/ssl/certs/example

state: directory

- name: Generate an OpenSSL private key.

openssl_privatekey:

path: /etc/ssl/certs/example/privkey.pem

- name: Generate an OpenSSL CSR.

openssl_csr:

path: /etc/ssl/certs/example/example.csr

privatekey_path: /etc/ssl/certs/example/privkey.pem

common_name: "example.com"

- name: Generate a Self Signed OpenSSL certificate.

openssl_certificate:

path: /etc/ssl/certs/example/fullchain.pem

privatekey_path: /etc/ssl/certs/example/privkey.pem

csr_path: /etc/ssl/private/example/example.csr

provider: selfsigned

Chapter 14 - Automating HTTPS and TLS Certificates 372

These tasks ensure there’s a directory inside which the certificate will live, create a
private key and Certificate Signing Request (CSR) in that directory, and use them to
generate the final cert.

You can then use this certificate to serve HTTPS requests using a web server; for
example, in an Nginx server configuration:

server {

listen 443 ssl default_server;

server_name example.com;

ssl_certificate {{ certificate_dir }}/{{ server_hostname }}/fullcha\

in.pem;

ssl_certificate_key {{ certificate_dir }}/{{ server_hostname }}/pri\

vkey.pem;

...

}

Let’s put together a full playbook using the openssl_*modules and Nginx, to build a
server complete with a self-signed certificate and a secure Nginx TLS configuration.

Idempotent Nginx HTTPS playbook with a self-signed
cert

For the sake of convenience, this example will target a Debian 9 server (though it
would be mostly unchanged for any other distribution), and there’s a fully tested
example included in this book’s GitHub repository: HTTPS Self-Signed Certificate
Demo VM¹⁷⁷.

Create a new folder for the Self-Signed Certificate web server playbook, and add a
main.yml playbook:

¹⁷⁷https://github.com/geerlingguy/ansible-for-devops/tree/master/https-self-signed

https://github.com/geerlingguy/ansible-for-devops/tree/master/https-self-signed
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-self-signed
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-self-signed

Chapter 14 - Automating HTTPS and TLS Certificates 373

1 ---

2 - hosts: all

3

4 vars_files:

5 - vars/main.yml

6

7 pre_tasks:

8 - name: Ensure apt cache is updated.

9 apt: update_cache=yes cache_valid_time=600

10

11 - name: Install dependency for pyopenssl.

12 apt: name=libssl-dev state=present

To keep the main playbook tidy, we will store any variables in an included variables
file (go ahead and create an empty main.yml vars file in a vars directory). Next,
on most Debian (and Debian-derived) distros, I add in a pre_task to make sure the
Apt cache is up to date (this prevents errors when installing packages later). Finally,
libssl-dev is a dependency we’ll need to have on the system tomake sure pyopenssl
can be installed by pip later, so we’ll do that too.

Next, to save some time, we can rely on some Ansible Galaxy roles to install and
configure some required software on the server:

14 roles:

15 - geerlingguy.firewall

16 - geerlingguy.pip

17 - geerlingguy.nginx

We use the firewall role to configure iptables to only allow traffic to the server on
certain ports, pip to install Python’s Pip packagemanager and the required pyOpenSSL
library, and nginx to install and configure Nginx.

To get these roles installed, add a requirements.yml file to your playbook directory,
with the contents:

Chapter 14 - Automating HTTPS and TLS Certificates 374

1 ---

2 roles:

3 - name: geerlingguy.firewall

4 - name: geerlingguy.pip

5 - name: geerlingguy.nginx

Then run ansible-galaxy install -r requirements.yml to install the roles.

In most cases, you should create an ansible.cfg in the playbook directory,
with at least the following contents:

[defaults]

roles_path = ./roles

This way, role dependencies are installed inside the playbook directory
itself instead of in your system-wide roles directory (as long as you run
the ansible-galaxy command inside the playbook directory).

Now let’s define a few variables to make the firewall, pip, and nginx roles configure
things how we want:

1 # Firewall settings.

2 firewall_allowed_tcp_ports:

3 - "22"

4 - "80"

5 - "443"

6

7 # Python settings.

8 pip_install_packages: ['pyopenssl']

9

10 # Nginx settings.

11 nginx_vhosts: []

12 nginx_remove_default_vhost: True

13 nginx_ppa_version: stable

14 nginx_docroot: /var/www/html

Chapter 14 - Automating HTTPS and TLS Certificates 375

For the firewall, you need port 22 open for remote SSH access, port 80 for HTTP
requests (which we’ll redirect to HTTPS), and 443 for HTTPS.

For Pip, we need to make sure the right version of pip is installed (so python3-pip

for Debian 9, which has Python 3 installed by default), and we tell it to install the
latest version of the pyopenssl package.

For Nginx, we want the default virtual host (server) which comes with the distro
package install to be removed, we want to set the role’s vhosts to an empty array
(since we’ll manage Nginx server configuration ourselves), and finally we’ll use the
docroot /var/www/html.

Now that we have all the base packages installed and configured, the next step is to
generate the self-signed certificate. To keep our playbook clean, the required tasks
can go into an imported task file, imported in the main.yml like so:

19 tasks:

20 - import_tasks: tasks/self-signed-cert.yml

Create a tasks folder, and create a self-signed-cert.yml task file inside. We’ll place
the tasks that create the key, generate the CSR, and generate the cert into this file:

1 ---

2 - name: Ensure directory exists for local self-signed TLS certs.

3 file:

4 path: "{{ certificate_dir }}/{{ server_hostname }}"

5 state: directory

6

7 - name: Generate an OpenSSL private key.

8 openssl_privatekey:

9 path: "{{ certificate_dir }}/{{ server_hostname }}/privkey.pem"

10

11 - name: Generate an OpenSSL CSR.

12 openssl_csr:

13 path: "{{ certificate_dir }}/{{ server_hostname }}.csr"

14 privatekey_path: "{{ certificate_dir }}/{{ server_hostname }}/privk\

15 ey.pem"

Chapter 14 - Automating HTTPS and TLS Certificates 376

16 common_name: "{{ server_hostname }}"

17

18 - name: Generate a Self Signed OpenSSL certificate.

19 openssl_certificate:

20 path: "{{ certificate_dir }}/{{ server_hostname }}/fullchain.pem"

21 privatekey_path: "{{ certificate_dir }}/{{ server_hostname }}/privk\

22 ey.pem"

23 csr_path: "{{ certificate_dir }}/{{ server_hostname }}.csr"

24 provider: selfsigned

We added two variables which we’ll now define in the vars/main.yml file (using
variables makes it easier to change the site and/or refactor to allow multiple values
in the future). Add these variables to the vars file:

19 # Self-signed certificate settings.

20 certificate_dir: /etc/ssl/private

21 server_hostname: https.test

Now that the playbook can generate a certificate (or on future runs, idempotently
verify the certificate’s existence), we need to configure Nginx to use the cert to deliver
traffic using TLS for a particular URL.

The geerlingguy.nginx role took care of the majority of Nginx configuration, but
we disabled that role’s management of virtual hosts, in favor of managing a single
virtual host (or server directive) ourselves. The following tasks copy an example
landing page into a defined docroot, then our custom HTTPS server configuration
to use the generated cert for the docroot:

Chapter 14 - Automating HTTPS and TLS Certificates 377

22 - name: Ensure docroot exists.

23 file:

24 path: "{{ nginx_docroot }}"

25 state: directory

26

27 - name: Copy example index.html file in place.

28 copy:

29 src: files/index.html

30 dest: "{{ nginx_docroot }}/index.html"

31 mode: 0755

32

33 - name: Copy Nginx server configuration in place.

34 template:

35 src: templates/https.test.conf.j2

36 dest: /etc/nginx/sites-enabled/https.test.conf

37 mode: 0644

38 notify: restart nginx

Fairly straightforward, but we need to fill in a couple blanks. First, here’s a quick and
easy index.html just to allow you to test things out:

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>HTTPS Self-Signed Certificate Test</title>

5 <style>* { font-family: Helvetica, Arial, sans-serif }</style>

6 </head>

7 <body>

8 <h1>HTTPS Self-Signed Certificate Test</h1>

9 <p>If you can see this message, it worked!</p>

10 </body>

11 </html>

Put that HTML into your playbook directory at files/index.html, then create
another file, templates/https.test.conf.j2, with the following contents:

Chapter 14 - Automating HTTPS and TLS Certificates 378

1 # HTTPS Test server configuration.

2

3 # Redirect HTTP traffic to HTTPS.

4 server {

5 listen 80 default_server;

6 server_name _;

7 index index.html;

8 return 301 https://$host$request_uri;

9 }

10

11 # Serve HTTPS traffic using the self-signed certificate created by Ansi\

12 ble.

13 server {

14 listen 443 ssl default_server;

15 server_name {{ server_hostname }};

16 root {{ nginx_docroot }};

17

18 ssl_certificate {{ certificate_dir }}/{{ server_hostname }}/fullcha\

19 in.pem;

20 ssl_certificate_key {{ certificate_dir }}/{{ server_hostname }}/pri\

21 vkey.pem;

22 }

The most important parts of this server configuration instruct Nginx to use the SSL
certificate we generated (at the path {{ certificate_dir }}/{{ server_hostname

}}/fullchain.pem;) for requests over port 443 for the domain {{ server_hostname

}} (in this case, requests to https://https.test/).

Production-ready TLS configuration will usually have more options de-
fined than the above server directive. It’s best practice to always configure
TLS as secure as possible (later examples meant for production use will do
so), but this example does the bareminimum to get SSLworkingwithNginx
defaults.

Notice the notify: restart nginx in the Copy Nginx server configuration in

place. task; this will force Nginx to restart after any configuration changes are made

Chapter 14 - Automating HTTPS and TLS Certificates 379

(or during the first provision, when the template is copied).

Once you run this playbook, if there were no errors, you should be able to securely
access https://https.test/ (assuming you have a record for that domain in your
hosts file pointing to your server’s IP address!). You might receive a security warning
since it’s self-signed, but all modern browsers and HTTPS-enabled tools should now
be able to load the site over an encrypted connection!

HTTPS Test site loads with a security warning

If you rebuild the server for https.test more than once (thus creating a
new self-signed certificate), be sure to delete the certificate you previously
added to your list of trusted certificates (e.g. via Keychain Access onmacOS
for Chrome and Safari, or in FireFox under Preferences > Advanced >
Certificates).

Automating Let’s Encrypt with Ansible for free
Certs

Self-signed certs are helpful in making sure certain environments can be accessed via
HTTPS, but they have a number of downsides, the major one being that every visitor

Chapter 14 - Automating HTTPS and TLS Certificates 380

has to confirm a security exception the first time they visit, and similarly command
line tools like curl and HTTP libraries usually fail when they encounter a self-signed
cert, unless you specifically ignore cert trust settings (which is a security risk).

It’s usually best to use a valid certificate from one of the trusted Certificate
Authorities (CAs).

Traditionally, you had to give some money to a Certificate Authority (CA) and work
through a mostly-manual process to acquire a certificate. You can still do this, and
there are use cases where this is still the best option, but Let’s Encrypt¹⁷⁸ took the
world of HTTPS certificates by storm by offering free, easy-to-automate certificates
to everyone, with the goal of creating “a more secure and privacy-respecting Web.”

In this example, we’ll acquire a certificate from Let’s Encrypt and set up auto-renewal
(since Let’s Encrypt certs are only valid for 90 days) on an Ubuntu server. There’s a
fully tested version of this example included in this book’s GitHub repository: HTTPS
Let’s Encrypt Demo¹⁷⁹.

Use Galaxy roles to get things done faster

Instead of writing all the automation ourselves, we can rely on some roles from
Ansible Galaxy to do the heavy lifting. Create a requirements.yml file in a new
project directory, containing:

1 ---

2 roles:

3 - name: geerlingguy.firewall

4 - name: geerlingguy.certbot

5 - name: geerlingguy.nginx

We’ll use the geerlingguy.firewall role to secure unused ports on the server,
geerlingguy.certbot to acquire and set up autorenewal of Let’s Encrypt certs, and
nginx to configure a web server to serve content over HTTPS.

The geerlingguy.certbot role is the heart of the operation; here’s how it works:

¹⁷⁸https://letsencrypt.org/
¹⁷⁹https://github.com/geerlingguy/ansible-for-devops/tree/master/https-letsencrypt

https://letsencrypt.org/
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-letsencrypt
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-letsencrypt
https://letsencrypt.org/
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-letsencrypt

Chapter 14 - Automating HTTPS and TLS Certificates 381

1. First, it either installs Certbot from the system packages or from source,
depending on the value of certbot_install_from_source. Source installs are
usually more usable since Certbot sometimes adds helpful features that will
never be backported into system packages.

2. Then it creates a certificate if configured via certbot_create_if_missing and
if the certificate(s) specified in certbot_certs do not yet exist. It creates the
certificates using the certbot_create_command and can also stop and start
certain services while the certificates are being created.

3. Finally, if certbot_auto_renew is true, it sets up a cron job for certificate
renewal, using the certbot renew command along with the options passed in
via certbot_auto_renew_options. Auto renewal is one of the main benefits of
Let’s Encrypt, because as long as your renewal process is working, you’ll never
wake up to an outage due to an expired certificate again!

Once we have the requirements file set up, create an ansible.cfg file in the project
directory to tell Ansible where to store and use the downloaded roles:

1 [defaults]

2 roles_path = ./roles

Install the required roles with: ansible-galaxy install -r requirements.yml.

Create the playbook

Add a main.yml playbook to the project directory. This playbook will target servers
running Ubuntu’s minimal distribution (which may not include Python), so we need
to do a couple special things to make sure Ansible can operate on the server in
pre_tasks. Then we’ll run the three roles we downloaded from Ansible Galaxy, and
configure Nginx to serve a simple web page using a Let’s Encrypt certificate.

First things first, start the play on all the letsencrypt hosts, and since we might have
to install Python to gather facts about the server for Ansible to use, disable the initial
gather_facts:

Chapter 14 - Automating HTTPS and TLS Certificates 382

1 ---

2 - hosts: letsencrypt

3 become: true

4

5 vars_files:

6 - vars/main.yml

We will also need to perform most tasks using sudo (since we have to modify the
system, configure Nginx, etc.), so become: true is necessary. Finally, to add the
configuration for certificate generation, firewall configuration, and Nginx, we’ll put
all the variables in a vars/main.yml file.

In pre_tasks in main.yml, update Apt’s caches since we want the freshest package
data available when installing software:

8 pre_tasks:

9 - name: Ensure apt cache is updated.

10 apt: update_cache=true cache_valid_time=600

Now, it’s time for the meat of this playbook, the roles. Call each one:

12 roles:

13 - geerlingguy.firewall

14 - geerlingguy.nginx

15 - geerlingguy.certbot

Since the roles will be doing the heavy lifting (yay for easy-to-read playbooks!), we
tell them what to do via variables in vars/main.yml:

Chapter 14 - Automating HTTPS and TLS Certificates 383

1 ---

2 # Firewall settings.

3 firewall_allowed_tcp_ports:

4 - "22"

5 - "80"

6 - "443"

7

8 # Nginx settings.

9 nginx_vhosts: []

10 nginx_remove_default_vhost: true

11 nginx_ppa_version: stable

12 nginx_docroot: /var/www/html

13

14 # Let's Encrypt certificate settings.

15 certbot_create_if_missing: true

16 certbot_admin_email: "{{ letsencrypt_email }}"

17 certbot_certs:

18 - domains:

19 - "{{ inventory_hostname }}"

By section:

• For a typical webserver, we need port 22 for SSH access, port 80 for unencrypted
HTTP access (Let’s Encrypt needs this to operate using its default verification
mechanism), and port 443 for encrypted HTTPS access.

• For Nginx, we will configure our own custom virtual host in a bit, so we make
sure the default vhost is removed, and we’ll also install the latest version of
Nginx from the Nginx Ubuntu PPA. We added an extra variable nginx_docroot
to tell our own automation code where to put a test web page and serve it via
Nginx.

• The Certbot role only requires a few variables to ensure a certificate is added:
– certbot_create_if_missing: The role will check if the certificate exists,
and if it doesn’t (e.g. on the first playbook run) it will create it. If it does
exist, it will be idempotent and make no changes.

Chapter 14 - Automating HTTPS and TLS Certificates 384

– certbot_admin_email: Let’s Encrypt lets you associate an email address¹⁸⁰
with every certificate it generates, and uses this email address to notify the
owner of any problems with the certificate, like impending expiration due
to a server issue.

– certbot_certs: You can add one or more certificates using this list; and
each certificate can cover one or more domains using Subject Alternative
Name (SAN) certificates.

Two of the Jinja variables used in the vars file are not defined in vars—rather, they
will come from the inventory. We’ll set that up soon.

Now that we have the playbook configuring an HTTP/S-ready firewall, a Let’s
Encrypt certificate generated by Certbot, and a barebones Nginx web server, we
need to configure Nginx to serve some content, and to serve it over HTTPS using the
Let’s Encrypt certificate.

So for the last part of the playbook, we need to:

1. Ensure the nginx_docroot directory exists.
2. Create and copy over a sample index.html file to serve from that document

root.
3. Create and copy over a Nginx server configuration which directs all traffic to

HTTPS and serves the traffic using the generated Let’s Encrypt certificate.

To make sure the nginx_docroot exists, add a task to the tasks section of the
playbook:

17 tasks:

18 - name: Ensure docroot exists.

19 file:

20 path: "{{ nginx_docroot }}"

21 state: directory

Since /var/www should already exist on an Ubuntu server, this is all we need.
If the parent directory hierarchy didn’t exist (e.g. we had nginx_docroot

set to /var/www/example/html), this task may also need recurse: true to
ensure the parent directories exist.

¹⁸⁰https://letsencrypt.org/docs/expiration-emails/

https://letsencrypt.org/docs/expiration-emails/
https://letsencrypt.org/docs/expiration-emails/

Chapter 14 - Automating HTTPS and TLS Certificates 385

Nowwe need an HTML file inside the docroot so Nginx can serve it, otherwise Nginx
will return a 404 Not Found. Create a simple HTML file named files/index.html in
your project directory, with the following contents:

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>HTTPS Let's Encrypt Test</title>

5 <style>* { font-family: Helvetica, Arial, sans-serif }</style>

6 </head>

7 <body>

8 <h1>HTTPS Let's Encrypt Test</h1>

9 <p>If you can see this message, it worked!</p>

10 </body>

11 </html>

Then add a copy task in main.yml to copy the file into place after the docroot task:

23 - name: Copy example index.html file in place.

24 copy:

25 src: files/index.html

26 dest: "{{ nginx_docroot }}/index.html"

27 mode: 0755

Finally, we need to configure Nginx with two server blocks; one to redirect HTTP re-
quests to HTTPS, and the other to serve HTTPS traffic using the Let’s Encrypt certifi-
cates. Create aNginx configuration template in templates/https-letsencrypt.conf.j2
with the following:

Chapter 14 - Automating HTTPS and TLS Certificates 386

1 # HTTPS server configuration.

2

3 # Redirect HTTP traffic to HTTPS.

4 server {

5 listen 80 default_server;

6 server_name _;

7 index index.html;

8 return 301 https://$host$request_uri;

9 }

10

11 # Serve HTTPS traffic using the Let's Encrypt certificate.

12 server {

13 listen 443 ssl default_server;

14 server_name {{ inventory_hostname }};

15 root {{ nginx_docroot }};

16

17 ssl_certificate /etc/letsencrypt/live/{{ inventory_hostname }}/full\

18 chain.pem;

19 ssl_certificate_key /etc/letsencrypt/live/{{ inventory_hostname }}/\

20 privkey.pem;

21 }

The first server block configures a default port 80 server which redirects all traffic
on port 80, for any incoming request, to the same URL, but with https://. This is a
handy way to force all traffic to SSL by default if you’re using Nginx.

The second server block configures a default port 443 server which handles all
HTTPS traffic.

It uses the inventory_hostname to tell Nginx what domain should be used to serve
traffic, and it sets the document root to the nginx_docroot.

Finally, it tells Nginx to use the certificate and key inside the default Let’s Encrypt
generated certificate path, which is always /etc/letsencrypt/live/[domain]/*.pem.

Add a task templating this Jinja template to a Nginx config file in main.yml, making
sure to restart Nginx when the template is created or modified:

Chapter 14 - Automating HTTPS and TLS Certificates 387

29 - name: Copy Nginx server configuration in place.

30 template:

31 src: templates/https-letsencrypt.conf.j2

32 dest: /etc/nginx/sites-enabled/https-letsencrypt.conf

33 mode: 0644

34 notify: restart nginx

At this point, we have a complete playbook. It should set up a firewall, create a
certificate, and configure Nginx to serve a web page using the certificate. But we
don’t have a server to run the playbook against!

Create a server and configure DNS

Let’s Encrypt generates certificates for domains only after verifying domain own-
ership. The Internet would be very insecure if Let’s Encrypt allowed any random
person to generate valid certificates for a domain like apple.com or google.com!

The easiest way to verify domain ownership to Let’s Encrypt is to ensure your server
is accessible over the public Internet. For internal servers, Let’s Encrypt might not be
the best option (though in some cases it can be made to work).

In Chapter 9, an example was provided for how to provision servers automatically via
Ansible. For your own project, youmaywant to automate the process of initial server
provisioning using Ansible, Terraform, or some other automation tool. But for this
example, you just need to make sure a server is running which is reachable via the
public Internet. You also need to point a domain at it (e.g. subdomain.example.com).

Once you’ve done that, and can confirm you can SSH into the server at the actual
domain name (e.g. ssh myuser@subdomain.example.com), then you’re ready to point
the playbook at the server and configure everything via Ansible.

Point the playbook inventory at the server

Assuming your server is reachable at subdomain.example.com, and your SSH user-
name is myuser, create an inventory file in the project directory with the following
contents:

Chapter 14 - Automating HTTPS and TLS Certificates 388

1 [letsencrypt]

2 subdomain.example.com

3

4 [letsencrypt:vars]

5 ansible_user=myuser

6 letsencrypt_email=webmaster@example.com

Now that the playbook knows how to connect to your public server, it’s time to try
it out. First, make sure all the required Galaxy roles are installed:

ansible-galaxy install -r requirements.yml

Then run the playbook:

ansible-playbook -i inventory main.yml

After a couple minutes, assuming Let’s Encrypt could reach your server at subdo-
main.example.com on port 80, you should be able to access the index.html webpage
created earlier over HTTPS.

Access your server over HTTPS!

Visit https://subdomain.example.com/ and you should see something like:

Chapter 14 - Automating HTTPS and TLS Certificates 389

HTTPS Test site loads with a valid Let’s Encrypt certificate

Automating free certificates with Let’s Encrypt can be fun, but make sure you’re
aware of Let’s Encrypt rate limits¹⁸¹ before you go ahead and automate certs for
3,000 of your subdomains at once!

Configuring Nginx to proxy HTTP traffic and
serve it over HTTPS

One common problem you may encounter is an old web application or service which
is no longer updated but must continue running, and the need for HTTPS encryption
(whether for SEO or security compliance).

You could use a third party service like Cloudflare to proxy all traffic through HTTPS,
but you’d still have a connection over the public Internet from Cloudflare’s network
to your backend server that’s unencrypted. Even if you’re using a CDN, it’s best to
encrypt the traffic all the way to as close to your application server as possible.

And that’s where Nginx comes in! There are other tools which can do the same thing,
but Nginx is easy to configure as an HTTPS proxy server for HTTP backends.

¹⁸¹https://letsencrypt.org/docs/rate-limits/

https://letsencrypt.org/docs/rate-limits/
https://letsencrypt.org/docs/rate-limits/

Chapter 14 - Automating HTTPS and TLS Certificates 390

Modify the Nginx configuration to proxy traffic

We’re going to use the exact same playbook and configuration from the self-signed
certificate example earlier in this chapter, with two small modifications. The adjusted
playbook is available in this book’s GitHub repository: HTTPS Nginx Proxy Demo
VM¹⁸². There are only two small changes needed to set up and test Nginx proxying
HTTPS traffic to an HTTP backend application:

1. Instead of serving traffic directly from Nginx, let Nginx proxy requests to a
backend server running on port 8080.

2. Run a backend HTTP server on port 8080 using Python.

First, configure the port 443 server block to proxy traffic to another service running
locally on port 8080:

11 # Proxy HTTPS traffic using a self-signed certificate.

12 server {

13 listen 443 ssl default_server;

14 server_name {{ server_hostname }};

15

16 location / {

17 include /etc/nginx/proxy_params;

18 proxy_pass http://localhost:8080;

19 proxy_read_timeout 90s;

20 proxy_redirect http://localhost:8080 {{ server_hostname }};

21 }

22

23 ssl_certificate {{ certificate_dir }}/{{ server_hostname }}/fullcha\

24 in.pem;

25 ssl_certificate_key {{ certificate_dir }}/{{ server_hostname }}/pri\

26 vkey.pem;

27 }

All that’s been done is the removal of the root directive, which was replaced with
the location directive. This particular location directive tells Nginx to proxy all
¹⁸²https://github.com/geerlingguy/ansible-for-devops/tree/master/https-nginx-proxy

https://github.com/geerlingguy/ansible-for-devops/tree/master/https-nginx-proxy
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-nginx-proxy
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-nginx-proxy

Chapter 14 - Automating HTTPS and TLS Certificates 391

requests to any path (/ includes everything) to the address http://localhost:8080,
with a 90 second backend timeout.

This assumes there’s a backend HTTP service running on port 8080, though! So, the
second step is to run something on port 8080. Luckily, since we already have Python
and a web root, we can use Python to run an HTTP server with a very simple CLI
command:

python3 -m http.server 8080 --directory /var/www/html

You can run that command interactively, or if you’re automating it in the Ansible
playbook from earlier, you can add a task after the “Copy example index.html file in
place.” task:

33 - name: Start simple python webserver on port 8080.

34 shell: >

35 python3 -m http.server 8080 --directory {{ nginx_docroot }} &

36 changed_when: false

37 async: 45

38 poll: 0

Note the use of &, async and poll to fire and forget the command, so it can run in the
background forever. It is not a good idea to run applications like this in production,
but for demonstration purposes it’s adequate to verify Nginx is proxying HTTPS
requests correctly.

The --directory option in this command requires Python 3.7 or later. Make
sure your operating system has this version of Python available (e.g. via
system packages, like with Debian 10 or later, or via a virtualenv).

Now that a server is running on port 8080, you should see Nginx proxying requests
successfully:

Chapter 14 - Automating HTTPS and TLS Certificates 392

Nginx proxies HTTPS requests to backend HTTP applications

If you log into the server and kill the Python process serving HTTP traffic on port
8080, then Nginx will still attempt to proxy traffic, but will return a 502 Bad Gateway
because the backend service is unavailable:

Nginx returns 502 Bad Gateway if the backend is unavailable

Once you learn to automate HTTPS certificates with Ansible and proxy backend
services with Nginx (or another suitable HTTPS-aware proxy), it becomes possible
to adopt HTTPS everywhere, no matter what kind of web applications you run.

Chapter 14 - Automating HTTPS and TLS Certificates 393

Summary

HTTPS is now an essential feature of any public-facing website and application, and
it’s fairly standard to use it on internal services too. Ansible automates the process
of encrypting all your HTTP traffic with TLS certificates, no matter the certificate
type or use case.

__

/ Fool me once, shame on you. Fool me twice, \

\ prepare to die. (Klingon Proverb) /

--

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 15 - Docker and Ansible
Docker is a highly optimized platform for building and running containers on
local machines and servers in a highly efficient manner. You can think of Docker
containers as sort-of lightweight virtual machines. This bookwon’t go into the details
of how Docker and Linux containers work, but will provide an introduction to how
Ansible can integrate with Docker to build, manage, and deploy containers.

Prior to running example Docker commands or building and managing
containers using Ansible, you’ll need tomake sure Docker is installed either
on your workstation or a VM or server where you’ll be testing everything.
Please see the installation guide for Docker¹⁸³ for help installing Docker on
whatever platform you’re using.

A brief introduction to Docker containers

Starting with an extremely simple example, let’s build a Docker image from a
Dockerfile. In this case, we want to show how Dockerfiles work and how we can
use Ansible to build the image in the same way as if we were to use the command
line with docker build.

Let’s start with a Dockerfile:

¹⁸³https://docs.docker.com/installation/

https://docs.docker.com/installation/
https://docs.docker.com/installation/

Chapter 15 - Docker and Ansible 395

1 # Build an example Docker container image.

2 FROM busybox

3 LABEL maintainer="Jeff Geerling"

4

5 # Run a command when the container starts.

6 CMD ["/bin/true"]

This Docker container doesn’t do much, but that’s okay; we just want to build it and
verify that it’s present and working—first with Docker, then with Ansible.

Save the above file as Dockerfile inside a new directory, and then on the command
line, run the following command to build the container:

$ docker build -t test .

After a few seconds, the Docker image should be built, and if you list all local images
with docker image, you should see your new test image (along with the busybox
image, which was used as a base):

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

test latest 50d6e6479bc7 About a minute ago 2.433 MB

busybox latest 4986bf8c1536 2 weeks ago 2.433 MB

If you want to run the container image you just created, enter the following:

$ docker run --name=test test

This creates a Docker container with the name test, and starts the container. Since
the only thing our container does is calls /bin/true, the container will run the
command, then exit. You can see the current status of all your containers (whether
or not they’re actively running) with the docker ps -a command:

Chapter 15 - Docker and Ansible 396

$ docker ps -a

CONTAINER ID IMAGE [...] CREATED STATUS

bae0972c26d4 test:latest [...] 3 seconds ago Exited (0) 2s ago

You can control the container using either the container ID (in this case, bae0972c26d4)
or the name (test); start with docker start [container], stop with docker stop

[container], delete/remove with docker rm [container].

If you delete the container (docker rm test) and the image you built (docker rmi

test), you can experiment with the Dockerfile by changing it and rebuilding the
image with docker build, then running the resulting image with docker run. For
example, if you change the command from /bin/true to /bin/false, then run build
and run the container, docker ps -a will show the container exited with the status
code 1 instead of 0.

For our purposes, this is a good introduction to how Docker works. To summarize:

• Dockerfiles contain the instructions Docker uses to build containers.
• docker build builds Dockerfiles and generates container images.
• docker images lists all images present on the system.
• docker run runs created images.
• docker ps -a lists all containers, both running and stopped.

When developing Dockerfiles to containerize your own applications, you will likely
want to get familiar with the Docker CLI and how the process works from a manual
perspective. But when building the final images and running them on your servers,
Ansible can help ease the process.

Using Ansible to build and manage containers

Ansible has built-in Docker modules that integrate nicely with Docker for container
management. We’re going to use them to automate the building and running of the
container (managed by the Dockerfile) we just created.

Move the Dockerfile you had into a subdirectory, and create a new Ansible playbook
(call it main.yml) in the project root directory. The directory layout should look like:

Chapter 15 - Docker and Ansible 397

docker/

main.yml

test/

Dockerfile

Inside the new playbook, add the following:

1 ---

2 - hosts: localhost

3 connection: local

4

5 tasks:

6 - name: Ensure Docker image is built from the test Dockerfile.

7 docker_image:

8 name: test

9 source: build

10 build:

11 path: test

12 state: present

The playbook uses the docker_image module to build an image. Provide a name for
the image, tell Ansible the source for the image is a build, then provide the path
to the Dockerfile in the build parameters (in this case, inside the test directory).
Finally, tell Ansible via the state parameter the image should be present, to ensure
it is built and available.

Ansible’s Docker integration may require you to install an extra Docker
python library on the system running the Ansible playbook. For example,
on ArchLinux, if you get the error “failed to import Python module”, you
will need to install the python2-docker package. On other distributions,
you may need to install the docker Python library via Pip (pip install

docker).

Run the playbook ($ ansible-playbook main.yml), and then list all the Docker
images ($ docker images). If all was successful, you should see a fresh test image
in the list.

Chapter 15 - Docker and Ansible 398

Run docker ps -a again, though, and you’ll see the new test image was never
run and is absent from the output. Let’s remedy that by adding another task to our
Ansible playbook:

12 - name: Ensure the test container is running.

13 docker_container:

14 image: test:latest

15 name: test

16 state: started

If you run the playbook again, Ansible will start the Docker container. Check the list
of containers with docker ps -a, and you’ll note the test container is again present.

You can remove the container and the image via ansible by changing the state

parameter to absent for both tasks.

This playbook assumes you have both Docker and Ansible installed on
whatever host you’re using to test Docker containers. If this is not the case,
you may need to modify the example so the Ansible playbook is targeting
the correct hosts and using the right connection settings. Additionally,
if the user account under which you run the playbook can’t run docker

commands, you may need to use become with this playbook.

The code example above can be found in the Ansible for DevOps GitHub
repository¹⁸⁴.

Building a Flask app with Ansible and Docker

Let’s build a more useful Docker-powered environment, with a container that runs
our application (built with Flask, a lightweight Python web framework), and a
container that runs a database (MySQL), along with a data container. We need a

¹⁸⁴https://github.com/geerlingguy/ansible-for-devops/tree/master/docker

https://github.com/geerlingguy/ansible-for-devops/tree/master/docker
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker

Chapter 15 - Docker and Ansible 399

separate data container to persist the MySQL database, because data changed inside
the MySQL container is lost every time the container stops.

Docker stack for Flask App

We’ll create a VM using Vagrant to run our Docker containers so the same Docker
configuration can be tested on any machine capable of running Ansible and Vagrant.
Create a docker folder, and inside it, the following Vagrantfile:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 VAGRANTFILE_API_VERSION = "2"

5

6 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

7 config.vm.box = "geerlingguy/ubuntu2004"

8 config.vm.network :private_network, ip: "192.168.56.39"

9 config.ssh.insert_key = false

10

11 config.vm.hostname = "docker-flask.test"

12 config.vm.provider :virtualbox do |v|

13 v.name = "docker-flask.test"

14 v.memory = 1024

15 v.cpus = 2

16 v.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]

Chapter 15 - Docker and Ansible 400

17 v.customize ["modifyvm", :id, "--ioapic", "on"]

18 end

19

20 # Enable provisioning with Ansible.

21 config.vm.provision "ansible" do |ansible|

22 ansible.playbook = "provisioning/main.yml"

23 end

24

25 end

We’ll use Ubuntu for this example, and we’ve specified an ansible.playbook to set
everything up. Inside provisioning/main.yml, we need to first install and configure
Docker (which we’ll do using the Ansible Galaxy role geerlingguy.docker), then
run some additional setup tasks, and finally build and start the required Docker
containers:

1 ---

2 - hosts: all

3 become: true

4

5 vars:

6 build_root: /vagrant/provisioning

7

8 pre_tasks:

9 - name: Update apt cache if needed.

10 apt: update_cache=yes cache_valid_time=3600

11

12 roles:

13 - role: geerlingguy.docker

14

15 tasks:

16 - import_tasks: setup.yml

17 - import_tasks: docker.yml

We’re using sudo for everything because Docker either requires root privileges, or
requires the current user account to be in the docker group. It’s simplest for our
purposes to set everything up with sudo by setting become: true.

Chapter 15 - Docker and Ansible 401

We also set a build_root variable that we’ll use later on to tell Docker to build the
containers inside the VM using the default shared Vagrant volume.

The geerlingguy.docker role requires no additional settings or configuration, but it
does need to be installed with ansible-galaxy, so add a requirements.yml:

1 roles:

2 - name: geerlingguy.docker

And make sure the role is installed:

$ ansible-galaxy install -r requirements.yml

Next, create setup.yml in the same provisioning directory alongside main.yml:

1 ---

2 - name: Install Pip.

3 apt: name=python3-pip state=present

4

5 - name: Install Docker Python library.

6 pip: name=docker state=present

Ansible needs the docker Python library in order to control Docker via Python, so
we install pip, then use it to install docker.

Next is the meat of the playbook: docker.yml (also in the provisioning directory).
The first task is to build Docker images for our data, application, and database
containers:

Chapter 15 - Docker and Ansible 402

1 ---

2 - name: Build Docker images from Dockerfiles.

3 docker_image:

4 name: "{{ item.name }}"

5 tag: "{{ item.tag }}"

6 source: build

7 build:

8 path: "{{ build_root }}/{{ item.directory }}"

9 pull: false

10 state: present

11 with_items:

12 - { name: data, tag: latest, directory: data }

13 - { name: flask, tag: latest, directory: www }

14 - { name: db, tag: latest, directory: db }

Don’t worry that we haven’t yet created the actual Dockerfiles required to create the
Docker images; we’ll do that after we finish structuring everything with Ansible.

Like our earlier usage of docker_image, we supply a name, build.path, and source

for each image. In this example, we’re also adding a tag, which behaves like a git tag,
allowing future Docker commands to use the images we created at a specific version.
We’ll be building three containers, data, flask, and db, and we’re pointing Docker
to the path /vagrant/provisioning/[directory], where [directory] contains the
Dockerfile and any other helpful files to be used to build the Docker image.

After building the images, we will need to start each of them (or at least make sure a
container is present, in the case of the data container—since you can use data volumes
from non-running containers). We’ll do that in three separate docker_container

tasks:

Chapter 15 - Docker and Ansible 403

16 # Data containers don't need to be running to be utilized.

17 - name: Run a Data container.

18 docker_container:

19 image: data:latest

20 name: data

21 state: present

22

23 - name: Run a Flask container.

24 docker_container:

25 image: www:latest

26 name: www

27 state: started

28 command: python /opt/www/index.py

29 ports: "80:80"

30

31 - name: Run a MySQL container.

32 docker_container:

33 image: db:latest

34 name: db

35 state: started

36 volumes_from: data

37 ports: "3306:3306"

38 env:

39 MYSQL_ROOT_PASSWORD: root

40 MYSQL_DATABASE: flask

41 MYSQL_USER: flask

42 MYSQL_PASSWORD: flask

Each of these containers’ configuration is a little more involved than the previous. In
the case of the first container, it’s just present; Ansible will ensure a data container
is present.

For the Flask container, we need to make sure our app is not only running, but
continues to run. So, unlike our earlier usage of /bin/true to run a container briefly
and exit, in this case we will provide an explicit command to run:

Chapter 15 - Docker and Ansible 404

25 command: python /opt/www/index.py

Calling the script directly will launch the app in the foreground and log everything
to stdout, making it easy to inspect what’s going on with docker logs [container]

if needed.

Additionally, we want to map the container’s port 80 to the host’s port 80, so external
users can load pages over HTTP. This is done using the ports option, passing data
just as you would using Docker’s --publish syntax.

The Flask container will have a static web application running on it, and has no
need for extra non-transient file storage, but the MySQL container will mount a data
volume from the data container, so it has a place to store data that won’t vanish
when the container dies and is restarted.

Thus, for the db container, we a special options: the volumes_from option mounts
volumes from the specified container (in this case, the data container).

Now that we have the playbook structured to build our Docker-based infrastructure,
we’ll build out each of the three Dockerfiles and related configuration to support the
data, www, and db containers.

At this point, we should have a directory structure like:

docker/

provisioning/

data/

db/

www/

docker.yml

main.yml

setup.yml

Vagrantfile

It’s best to use lightweight base images without any extra frills instead of
heavyweight ‘VM-like’ images. Additionally, lightweight server environ-
ments where containers are built and run, like Fedora CoreOS, don’t need
the baggage of a standard Linux distribution. If you need Ansible available
for configuration and container management in such an environment, you
also need to have Python and other dependencies installed.

Chapter 15 - Docker and Ansible 405

Data storage container

For the data storage container, we don’t needmuch; we just need to create a directory
and set it as an exposed mount point using VOLUME:

1 # Build a simple MySQL data volume Docker container.

2 FROM busybox

3 MAINTAINER Jeff Geerling <geerlingguy@mac.com>

4

5 # Create data volume for MySQL.

6 RUN mkdir -p /var/lib/mysql

7 VOLUME /var/lib/mysql

We create a directory (line 6), and expose the directory as a volume (line 7) which
can be mounted by the host or other containers. Save the above into a new file,
docker/provisioning/data/Dockerfile.

This container builds on top of the official busybox base image. Busybox
is an extremely simple distribution that is Linux-like but does not contain
every option or application generally found in popular distributions like
Debian, Ubuntu, or RHEL. Since we only need to create and share a
directory, we don’t need any additional ‘baggage’ inside the container. In
the Docker world, it’s best to use the most minimal base images possible,
and to only install and run the bare necessities inside each container to
support the container’s app.

Flask container

Flask¹⁸⁵ is a lightweight Python web framework “based on Werkzeug, Jinja 2 and
good intentions”. It’s a great web framework for small, fast, and robust websites and
apps, or even an API. For our purposes, we need to build a Flask app that connects to a
MySQL database and displays the status of the connection on a basic web page (very
much like our PHP example, in the earlier Highly-Available Infrastructure example).

Here’s the code for the Flask app (save it as docker/provisioning/www/index.py.j2):

¹⁸⁵https://palletsprojects.com/p/flask/

https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/

Chapter 15 - Docker and Ansible 406

1 # Infrastructure test page.

2 from flask import Flask

3 from flask import Markup

4 from flask import render_template

5 from flask_sqlalchemy import SQLAlchemy

6 from sqlalchemy import text

7

8 app = Flask(__name__)

9

10 # Configure MySQL connection.

11 db_uri = 'mysql://flask:flask@{{ host_ip_address }}/flask'

12 app.config['SQLALCHEMY_DATABASE_URI'] = db_uri

13 db = SQLAlchemy(app)

14

15 @app.route("/")

16 def test():

17 mysql_result = False

18 try:

19 query = text('SELECT 1')

20 result = db.engine.execute(query)

21 if [row[0] for row in result][0] == 1:

22 mysql_result = True

23 except:

24 pass

25

26 if mysql_result:

27 result = Markup('PASS')

28 else:

29 result = Markup('FAIL')

30

31 # Return the page with the result.

32 return render_template('index.html', result=result)

33

34 if __name__ == "__main__":

35 app.run(host="0.0.0.0", port=80)

Chapter 15 - Docker and Ansible 407

This app defines one route (/), listens on every interface on port 80, and shows
a MySQL connection status page rendered by the template index.html. There’s
nothing particularly complicated in this application, but there is one Jinja variable
({{ host_ip_address }}) which anAnsible playbookwill replace during deployment,
and the app has a few dependencies (like flask-sqlalchemy) which will need to be
installed via the Dockerfile.

Since we are using a Jinja template to render the page, let’s create that template
in docker/provisioning/www/templates/index.html (Flask automatically picks up
any templates inside a templates directory):

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Flask + MySQL Docker Example</title>

5 <style>* { font-family: Helvetica, Arial, sans-serif }</style>

6 </head>

7 <body>

8 <h1>Flask + MySQL Docker Example</h1>

9 <p>MySQL Connection: {{ result }}</p>

10 </body>

11 </html>

In this case, the .html template contains a Jinja variable ({{ result }}), and Flask
will fill in the variable with the status of the MySQL connection.

Now that we have the app defined, we need to build the container to run the app.
Here is a Dockerfile that will install all the required dependencies, then copy an
Ansible playbook and the app itself into place so we can do the more complicated
configuration (like copying a template with variable replacement) through Ansible:

Chapter 15 - Docker and Ansible 408

1 # A simple Flask app container.

2 FROM geerlingguy/docker-ubuntu2004-ansible

3 MAINTAINER Jeff Geerling <geerlingguy@mac.com>

4

5 # Install Flask app dependencies.

6 RUN apt-get update

7 RUN apt-get install -y libmysqlclient-dev build-essential \

8 python3-dev python3-pip

9 RUN pip3 install flask flask-sqlalchemy mysqlclient

10

11 # Install playbook and run it.

12 COPY playbook.yml /etc/ansible/playbook.yml

13 COPY index.py.j2 /etc/ansible/index.py.j2

14 COPY templates /etc/ansible/templates

15 RUN mkdir -m 755 /opt/www

16 RUN ansible-playbook /etc/ansible/playbook.yml --connection=local

17

18 EXPOSE 80

Instead of installing apt and pip packages using Ansible, we’ll install them using RUN
commands in the Dockerfile. This allows those commands to be cached by Docker.
Generally, more complicated package installation and configuration is easier and
more maintainable inside Ansible, but in the case of package installation, having
Docker cache the steps so future docker build commands take seconds instead of
minutes is worth the verbosity of the Dockerfile.

At the end of the Dockerfile, we run a playbook (which should be located in the same
directory as the Dockerfile) and expose port 80 so the app can be accessed via HTTP
by the outside world. Next we’ll create the app deployment playbook.

Chapter 15 - Docker and Ansible 409

Purists might cringe at the sight of an Ansible playbook inside a Dockerfile,
and for good reason! Commands like the ansible-playbook command
cover up configuration that might normally be done (and cached) within
Docker. Additionally, using the geerlingguy/docker-ubuntu1804-ansible
base image (which includes Ansible) requires an initial download that’s 50+
MB larger than a comparable Debian or Ubuntu image without Ansible.
However, for brevity and ease of maintenance, we’re using Ansible to
manage all the app configuration inside the container (otherwise we’d need
to run a bunch of verbose and incomprehensible shell commands to replace
Ansible’s template functionality).

Using a tool like ansible-bender¹⁸⁶, or building containers with Ansible
directly (using the docker connection plugin, mentioned later in this
chapter), are ways you can still automate container image builds without
running Ansible inside the image.

In order for the Flask app to function properly, we need to get the host_ip_address,
then replace the variable in the index.py.j2 template. Create the Flask deployment
playbook at docker/provisioning/www/playbook.yml:

1 ---

2 - hosts: localhost

3 become: true

4

5 tasks:

6 - name: Get host IP address.

7 shell: "/sbin/ip route | awk '/default/ { print $3 }'"

8 register: host_ip

9 changed_when: false

10

11 - name: Set host_ip_address variable.

12 set_fact:

13 host_ip_address: "{{ host_ip.stdout }}"

14

15 - name: Copy Flask app into place.

16 template:

¹⁸⁶https://github.com/ansible-community/ansible-bender

https://github.com/ansible-community/ansible-bender
https://github.com/ansible-community/ansible-bender

Chapter 15 - Docker and Ansible 410

17 src: /etc/ansible/index.py.j2

18 dest: /opt/www/index.py

19 mode: 0755

20

21 - name: Copy Flask templates into place.

22 copy:

23 src: /etc/ansible/templates

24 dest: /opt/www

25 mode: 0755

The shell command that registers the host_ip is an easy way to retrieve the IP while
still letting Docker do its own virtual network management.

The last two tasks copy the flask app and templates directory into place.

The docker/provisioning/www directory should now contain the following:

www/

templates/

index.html

Dockerfile

index.py.j2

playbook.yml

MySQL container

We’ve configured MySQL a few times throughout this book, so little time will
be spent discussing how MySQL is set up. We’ll instead dive into how MySQL
works inside a Docker container, with a persistent data volume from the previously-
configured data container.

For MySQL, there is already a very well-maintained and flexible community MySQL
Docker image we can rely on. To use it, we’ll wrap it in our own Dockerfile (in case
we want to make further customizations in the future).

Chapter 15 - Docker and Ansible 411

1 # A simple MySQL container.

2 FROM mysql:5.7

3 MAINTAINER Jeff Geerling <geerlingguy@mac.com>

4

5 EXPOSE 3306

This Dockerfile tells Docker to pull from the mysql image on Docker Hub, and then
expose port 3306.

The docker/provisioning/db directory should now contain the following:

db/

Dockerfile

Ship it!

Now that everything’s in place, you should be able to cd into the main docker

directory, and run vagrant up. After 10 minutes or so, Vagrant should show
Ansible provisioning was successful, and if you visit http://192.168.56.39/ in your
browser, you should see something like the following:

Docker orchestration success!

If you see “MySQL Connection: PASS”, congratulations, everything worked! If it
shows ‘FAIL’, you might need to give the MySQL a little extra time to finish its
initialization, since it has to build it’s environment on first launch. If the page
doesn’t show up at all, you might want to compare your code with the Docker Flask
example¹⁸⁷ on GitHub.

The entire Docker Flask example¹⁸⁸ is available on GitHub, if you’d like to clone it
and try it locally.

¹⁸⁷https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-flask
¹⁸⁸https://github.com/geerlingguy/ansible-for-devops/tree/master/docker

https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-flask
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-flask
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-flask
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker

Chapter 15 - Docker and Ansible 412

Building containers with Ansible from the
outside

In the previous example, an Ansible playbook was run inside a Docker container to
build the Flask application image. While this approach works and is maintainable, it
alsomakes for a lot of cruft. Onemajor advantage of container-based app deployment
is a nice tidy container image per service.

To use Ansible inside a container requires a lot of dependencies—Python, Ansible’s
dependencies, and Ansible itself.

One solution to this problem is to use ansible-bender¹⁸⁹. One of the key features of
ansible-bender is a container image build system which applies Ansible tasks to a
Docker image. So instead of Ansible running inside the container being built, you
use Ansible to build the container.

Earlier in Ansible’s history, there was a project called [Ansible Container],
which used a sidecar container running Ansible to apply Ansible roles to
a container image, and stored each role as one container image layer. That
project never achieved critical mass and was left in a state of disrepair after
around 2018.

Build a Hubot Slack bot container with
ansible_connection: docker

Most examples in this book use the default ansible_connection plugin, ssh, which
connects to servers using SSH. A few examples also use the local plugin, which runs
commands locally without SSH.

There are actually a few dozen connection plugins that ship with Ansible, including
kubectl for interacting with Kubernetes pods, saltstack for piggybacking salt
minions, winrm for connecting over Microsoft’s WinRM, and docker, which runs
tasks in Docker containers.
¹⁸⁹https://github.com/ansible-community/ansible-bender

https://github.com/ansible-community/ansible-bender
https://github.com/ansible-community/ansible-bender

Chapter 15 - Docker and Ansible 413

This last connection plugin is helpful if you want to build Docker container images
using Ansible without the overhead of installing Ansible inside the container.

To learn how the docker connection plugin works, we’ll build a Hubot Slack bot.

Hubot and Slack

To give a little background, Hubot¹⁹⁰ is an open-source chat bot from GitHub, written
in CoffeeScript, which can be connected to many different chat systems. Slack¹⁹¹ is
an popular chat platform used by many businesses to communicate. Many teams
benefit from a bot like Hubot, as they can store data in Hubot for quick retrieval, or
even connect Hubot to other services (like CI tools) and kick off deployments, check
infrastructure health, and do other helpful things.

Building a Docker container with Ansible

The first step in setting up our bot project is to create a new directory (e.g.
docker-hubot) and an Ansible playbook, we’ll call it main.yml.

You’ll have to have Docker installed and running on the computer where you’ll run
this playbook, and the first few setup steps will use connection: local to get the
container build started:

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5

6 vars:

7 base_image: node:14

8 container_name: hubot_slack

9 image_namespace: a4d

10 image_name: hubot-slack

¹⁹⁰https://hubot.github.com
¹⁹¹https://slack.com

https://hubot.github.com/
https://slack.com/
https://hubot.github.com/
https://slack.com/

Chapter 15 - Docker and Ansible 414

There are also a few variables defined which we’ll use later in the playbook to define
things like the Docker base image to be used, the name for the container we’re
building, and the namespace and name for the final generated Docker image. We
don’t need to gather_facts since we aren’t going to do much on the local connection.

12 pre_tasks:

13 - name: Make the latest version of the base image available locally.

14 docker_image:

15 name: '{{ base_image }}'

16 source: pull

17 force_source: true

18

19 - name: Create the Docker container.

20 docker_container:

21 image: '{{ base_image }}'

22 name: '{{ container_name }}'

23 command: sleep infinity

24

25 - name: Add the newly created container to the inventory.

26 add_host:

27 hostname: '{{ container_name }}'

28 ansible_connection: docker

In a pre_tasks area, we’ll set up the Docker container so we can get Hubot on it:

1. The docker_image task: Pull the base_image (Ansible’s equivalent of docker

pull), and make sure the latest version is always present when the playbook
runs.

2. The docker_container task: Create a Docker container (Ansible’s equivalent of
docker run) from the base_image.

3. The add_host task: Add the just-created container to the Ansible inventory.

Now that we have a container running and in the inventory, we can build inside of
it, using the docker connection plugin. Following the best practices we established
earlier in the book, we’ll put all the reusable logic inside an Ansible role, which we’ll
create in amoment. For now,we can call the role about to be created in the playbook’s
roles section:

Chapter 15 - Docker and Ansible 415

30 roles:

31 - name: hubot-slack

32 delegate_to: '{{ container_name }}'

Note the delegate_to. Any task, playbook, or role we want Ansible to run inside the
Docker container needs to be delegated to the container.

Before building the hubot-slack role, let’s finish off the container image build
process and the rest of the main playbook:

34 post_tasks:

35 - name: Clean up the container.

36 shell: >

37 apt-get remove --purge -y python &&

38 rm -rf /var/lib/apt/lists/*

39 delegate_to: '{{ container_name }}'

40

41 - name: Commit the container.

42 command: >

43 docker commit

44 -c 'USER hubot'

45 -c 'WORKDIR "/home/hubot"'

46 -c 'CMD ["bin/hubot", "--adapter", "slack"]'

47 -c 'VOLUME ["/home/hubot/scripts"]'

48 {{ container_name }} {{ image_namespace }}/{{ image_name }}:lat\

49 est

50

51 - name: Remove the container.

52 docker_container:

53 name: '{{ container_name }}'

54 state: absent

The post-tasks clean up unnecessary cruft inside the container (trimming down the
size of the committed image), commit the Docker container to an image (tagged
a4d/hubot-slack:latest), and remove the running container.

Chapter 15 - Docker and Ansible 416

When building from a Dockerfile, you can set things like the USER (the user used to
run the CMD or ENTRYPOINT in the container) and CMD (the defaults for an executing
container) directly. In our case, since we’re not building from a Dockerfile, we set
these options using docker commit’s -c or --change option.

Now that we have the main scaffolding in place for building a Docker container,
committing an image from that container, and tearing down the container, it’s time
to add the ‘meat’ to our playbook—the role that installs Hubot and its Slack adapter.

Building the hubot-slack role

As with any role, the easiest way to scaffold the necessary files is using the
ansible-galaxy command. Create a hubot-slack role in a roles subdirectory with:

ansible-galaxy role init hubot-slack

You can delete some unneeded role directories, namely files, handlers, templates,
tests, and vars. If you want, fill in the metadata fields inside meta/main.yml (this is
only needed if you’re publishing the role on Ansible Galaxy or if you need to have
other roles defined as dependencies, though).

SinceHubot isn’t too hard to install, we can do everythingwe need inside tasks/main.yml.
The first thing we need to do is ensure all the required dependencies for generating
our bot are present:

1 ---

2 - name: Install dependencies.

3 package:

4 name: sudo

5 state: present

6

7 - name: Install required Node.js packages.

8 npm:

9 name: "{{ item }}"

10 state: present

11 global: yes

12 with_items:

Chapter 15 - Docker and Ansible 417

13 - yo

14 - generator-hubot

Because we want to be able to run certain commands as a hubot user later, we’ll need
sudo present so Ansible can become the hubot user. Then we’ll install some require
dependencies—yo and generator-hubot, which are used to build the bot. Node.js is
already present inside the container, since we chose to build the container based off
the node:14 base image.

16 - name: Ensure hubot user exists.

17 user:

18 name: hubot

19 create_home: yes

20 home: "{{ hubot_home }}"

It’s best to run Hubot inside an isolated directory, using a dedicated user account, so
we set up a hubot user account with its own home directory. To make the Hubot role
easier to adapt, a variable is used for the hubot user’s home directory. We’ll define
that later in defaults/main.yml.

22 - name: Generate hubot.

23 command: >

24 yo hubot

25 --owner="{{ hubot_owner }}"

26 --name="{{ hubot_name }}"

27 --description="{{ hubot_description }}"

28 --adapter=slack

29 --defaults

30 chdir={{ hubot_home }}

31 become: yes

32 become_user: hubot

The yo hubot command scaffolds all the code necessary to run Hubot, and all the
options passed in tell the generator to run non-interactively. We will define the
default role hubot_ vars in this command later in defaults/main.yml.

Chapter 15 - Docker and Ansible 418

34 - name: Remove certain scripts from external-scripts.json.

35 lineinfile:

36 path: "{{ hubot_home }}/external-scripts.json"

37 regexp: "{{ item }}"

38 state: absent

39 with_items:

40 - 'redis-brain'

41 - 'heroku'

42 become: yes

43 become_user: hubot

44

45 - name: Remove the hubot-scripts.json file.

46 file:

47 path: "{{ hubot_home }}/hubot-scripts.json"

48 state: absent

There are a couple cleanup tasks which make sure Hubot runs properly in this
isolated container. In the lineinfile task, the persistent Redis connection plugin
and Heroku support are removed, since they are not needed. Also, the unused
hubot-scripts.json file is removed to prevent errors during Hubot startup.

The final step in creating the hubot-slack role is to add default values for the
variables we’re using in the role, so put the following inside defaults/main.yml:

1 ---

2 hubot_home: /home/hubot

3 hubot_owner: Ansible for DevOps

4 hubot_name: a4dbot

5 hubot_description: Ansible for DevOps test bot.

Building and running the Hubot Slack bot container

You should now have a directory containing the main.yml Ansible playbook and a
hubot-slack role inside the roles directory. To build the container image, make sure
Docker is running, and run:

Chapter 15 - Docker and Ansible 419

ansible-playbook main.yml

Once the playbook completes, run docker images to verify the a4d/hubot-slack

image was created:

$ docker images

REPOSITORY TAG IMAGE ID SIZE

a4d/hubot-slack latest 142db74437da 804MB

node 8 55791187f71c 673MB

Before you can run an instance of the new container image and have your bot in your
Slack channels, you have to get an API token from Slack. Follow the instructions in
Slack’s guide, Slack Developer Kit for Hubot¹⁹², and get an API token.

Then run the following command to run an instance of Hubot attached to your Slack
channel (replace TOKEN with your bot’s Slack API token):

docker run -d --name hubot -e HUBOT_SLACK_TOKEN=TOKEN a4d/hubot-slack

The container should start, and you should see a new active member in your Slack
team! In Slack, you can invite the bot to channels, converse directly, etc. (send a
message with help to the bot to get all available commands).

If something went wrong, use docker logs hubot to find out what happened.

Once you’re finished playing around with Hubot, you can kill and remove the
container with docker rm -f hubot.

Summary

You can use Ansible to build containers many different ways, depending on how
you want to architect your container build pipeline. Using Ansible with the docker
connection plugin allows you to treat a Docker container much like any other server
in your fleet.

¹⁹²https://slackapi.github.io/hubot-slack/

https://slackapi.github.io/hubot-slack/
https://slackapi.github.io/hubot-slack/

Chapter 15 - Docker and Ansible 420

Some parts of an Ansible-based container build pipeline require a little more
verbosity, but in the end, you can do things like use the exact same Ansible
roles for VMs and bare metal servers as you do a Docker container, making your
overall infrastructure maintenance easier. Instead of maintaining legacy servers
using Ansible playbooks, and Docker containers using Dockerfiles, you can do
everything with Ansible!

The entire Docker Hubot Slack bot example¹⁹³ is available on GitHub, if you’d like
to clone it and try it locally.

Summary

The examples shown here barely scratch the surface of what makes Docker (and con-
tainer-based application deployment in general) a fascinating and useful application
deployment tool. Docker and other container-based tools are still in their infancy, so
there are dozens of ways manage the building, running, and linking of containers.
Ansible is a solid contender for managing your entire container-based application
lifecycle (and the infrastructure on which it runs).

/ Any sufficiently advanced technology is \

| indistinguishable from magic. |

\ (Arthur C. Clarke) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

¹⁹³https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-hubot

https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-hubot
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-hubot

Afterword
You should be well on your way towards streamlined infrastructure management.
Many developers and sysadmins have been helped by this book, and many have even
gone further and contributed back to the book, in the form of corrections, suggestions,
and fruitful discussion!

Thanks to you for purchasing and reading this book, and a special thanks to all those
who have given direct feedback in the form of corrections, PRs, or suggestions for
improvement:

@LeeVanSteerthem, Jonathan Nakatsui, Joel Shprentz, Hugo Posca, Jon Forrest,
Rohit Bhute, George Boobyer (@ibluebag), Jason Baker (@Alchemister5), Jonathan
Le (@jonathanhle), Barry McClendon, Nestor Feliciano, @dan_bohea, @lekum,
@queue_tip_, @wimvandijck, André, @39digits, @aazon, Ned Schumann, @andy-
post, @michel_slm, @erimar77, @geoand, Larry B, Tim Gerla, @b_borysenko,
Stephen H, @chesterbr, @mrjester888, @gkedge, @opratr, @briants5, @atweb,
@devtux_at,@sillygwailo, Anthony R,@arbabnazar, LeroyH, David, Joel S, Stephen
W, PaulM, Adrian,@daniloradenovic,@e1nh4nd3r,@daniel,@guntbert,@rdonkin,
@charleshepner, /u/levelupirl,@tychay,@williamt,@wurzeldub,@santisaez,@jon-
leibowitz,@mattjmcnaughton,@cwardgar,@rschmidtz,@scarroy, BenK,@codeyy,
@Gogoswitch, bngsudheer, @vtraida, @everett-toews, Germain G, vinceskahan,
@vaygr, bryankennedy, i-zu, jdavid5815, krystan, nkabir, dglinder, ck05, and scott-
davis99!

Appendix A - Using Ansible on
Windows workstations
Ansible works primarily over the SSH protocol, which is supported natively by most
every server, workstation, and operating system on the planet, with one exception—
Microsoft’s venerable Windows OS (though this may change in the coming years).

To use SSH on Windows, you need additional software. But Ansible also requires
other utilities and subsystems only present on Linux or other UNIX-like operating
systems. This poses a problem for many system administrators who are either forced
to use or have chosen to use Windows as their primary OS.

This appendix will guide Windows users through the author’s preferred method of
using Ansible on a Windows workstation.

Ansible can manage Windows hosts (see Ansible’s Windows Guides¹⁹⁴
documentation), but doesn’t run within Windows natively. You still need
to follow the instructions here to run the Ansible client on aWindows host.

Method 1 - Use the Windows Subsystem for
Linux

If you are running Windows 10, and have upgraded to the latest version, you can
install the Windows Subsystem for Linux (WSL), which is the most seamless Linux
integration you can currently get in Windows.

The WSL downloads a Linux distribution and places it in a special privileged VM
layer that’s as transparent as it can be while sandboxed from the general Windows
environment. UsingWSL, you can open up a Linux prompt and have access to almost

¹⁹⁴https://docs.ansible.com/ansible/latest/user_guide/windows.html

https://docs.ansible.com/ansible/latest/user_guide/windows.html
https://docs.ansible.com/ansible/latest/user_guide/windows.html

Appendix A - Using Ansible on Windows workstations 423

all the same software and functionality you would have if you were running Linux
natively!

Microsoft has the most up-to-date installation guide¹⁹⁵ on their Developer Network
site, but the installation process is straightforward:

1. Open a PowerShell prompt as an administrator and run the command:

dism.exe /online /enable-feature \

/featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

2. Restart your computer when prompted.

At this point, theWSL is installed, but you haven’t installed a Linux environment. To
install Linux, followMicrosoft’s guide to download and install a Linux distribution¹⁹⁶.
For our purposes, I recommend the latest Ubuntu LTS release.

Once installation completes, there will be a shortcut either on your Desktop or in the
Start menu, and you can either use this shortcut to open a Terminal session, or you
can type bash in a Command prompt.

Now that you have Linux running inside Windows, you can install Ansible inside
the WSL environment just like you would if you were running Linux natively!

Installing Ansible inside WSL

Before installing Ansible, make sure your package list is up to date by updating apt-
get:

$ sudo apt-get update

The easiest way to install Ansible is to use pip3, a package manager for Python.
Python should already be installed on the system, but pip3may not be, so let’s install
it, along with Python’s development header files (which are in the python3-dev

package).

¹⁹⁵https://docs.microsoft.com/en-us/windows/wsl/install-win10
¹⁹⁶https://docs.microsoft.com/en-us/windows/wsl/install-win10#install-your-linux-distribution-of-choice

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10#install-your-linux-distribution-of-choice
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10#install-your-linux-distribution-of-choice

Appendix A - Using Ansible on Windows workstations 424

$ sudo apt-get install -y python3-pip python3-dev

After the installation is complete, install Ansible:

$ pip3 install ansible

After Ansible and all its dependencies are downloaded and installed, make sure
Ansible is running and working:

$ ansible --version

ansible [core 2.14.6]

...

python version = 3.10.11

jinja version = 3.1.2

libyaml = True

Upgrading Ansible is also easy with pip: Run pip3 install --upgrade

ansible to get the latest version.

You can now use Ansible within the Ubuntu Bash environment. You can access files
on the Windows filesystem inside the /mnt folder (/mnt/c corresponds to C:\), but
be careful when moving things between Windows and the WSL, as strange things
can happen because of line ending, permissions, and filesystem differences!

Many of the examples in this book use Vagrant, Docker, or Kubernetes
command line utilities that sometimes behave differently when run under
the Windows Subsystem for Linux. Please follow issue 291 in this book’s
repository¹⁹⁷ for the latest updates, as I am trying to make sure all examples
can be run on Windows just as easily as on macOS or Linux.

¹⁹⁷https://github.com/geerlingguy/ansible-for-devops/issues/291

https://github.com/geerlingguy/ansible-for-devops/issues/291
https://github.com/geerlingguy/ansible-for-devops/issues/291
https://github.com/geerlingguy/ansible-for-devops/issues/291

Appendix A - Using Ansible on Windows workstations 425

Method 2 - When WSL is not an option

If you’re runningWindows 7 or 8, or for some reason can’t install or use theWindows
Subsystem for Linux in Windows 10 or later, then the best alternative is to build a
local Virtual Machine (VM) and install and use Ansible inside.

Prerequisites

The easiest way to build a VM is to download and install Vagrant and VirtualBox
(both 100% free!), and then use Vagrant to install Linux, and PuTTY to connect and
use Ansible. Here are the links to download these applications:

1. Vagrant¹⁹⁸
2. VirtualBox¹⁹⁹
3. PuTTY²⁰⁰

Once you’ve installed all three applications, you can use either the command prompt
(cmd), Windows PowerShell, or a Linux terminal emulator like Cygwin to boot up a
basic Linux VM with Vagrant (if you use Cygwin, which is not covered here, you
could install its SSH component and use it for SSH, and avoid using PuTTY).

Set up an Ubuntu Linux Virtual Machine

Open PowerShell (open the Start Menu or go to the Windows home and type in
‘PowerShell’), and change directory to a place where you will store some metadata
about the virtual machine you’re about to boot. I like having a ‘VMs’ folder in my
home directory to contain all my virtual machines:

¹⁹⁸http://www.vagrantup.com/downloads.html
¹⁹⁹https://www.virtualbox.org/
²⁰⁰http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Appendix A - Using Ansible on Windows workstations 426

Change directory to your user directory.

PS > cd C:/Users/[username]

Make a 'VMs' directory and cd to it.

PS > md -Name VMs

PS > cd VMs

Make a 'Ubuntu64' directory and cd to it.

PS > md -Name ubuntu-bionic-64

PS > cd ubuntu-bionic-64

Now, use vagrant to create the scaffolding for our new virtual machine:

PS > vagrant init ubuntu/bionic64

Vagrant creates a ‘Vagrantfile’ describing a basic Ubuntu 64-bit virtual machine in
the current directory, and is now ready for you to run vagrant up to download and
build the machine. Run vagrant up, and wait for the box to be downloaded and
installed:

PS > vagrant up

After a few minutes, the box will be downloaded and a new virtual machine set
up inside VirtualBox. Vagrant will boot and configure the machine according to the
defaults defined in the Vagrantfile. Once the VM is booted and you’re back at the
command prompt, it’s time to log into the VM.

Log into the Virtual Machine

Use vagrant ssh-config to grab the SSH connection details, which you will then
enter into PuTTY to connect to the VM.

PS > vagrant ssh-config

It should show something like:

Appendix A - Using Ansible on Windows workstations 427

Host default

Hostname 127.0.0.1

User vagrant

Port 2222

UserKnownHostsFile /dev/null

StrictHostKeyChecking no

PasswordAuthentication no

IdentityFile C:/Users/[username]/.vagrant.d/insecure_private_key

IdentitiesOnly yes

LogLevel FATAL

The lines we’re interested in are the Hostname, User, Port, and IdentityFile.

Launch PuTTY, and enter the connection details:

• Host Name (or IP address): 127.0.0.1
• Port: 2222

Click Open to connect, and if you receive a Security Alert concerning the server’s
host key, click ‘Yes’ to tell PuTTY to trust the host. You can save the connection
details by entering a name in the ‘Saved Sessions’ field and clicking ‘Save’ to save
the details.

PuTTY will ask for login credentials; we’ll use the default login for a Vagrant box
(vagrant for both the username and password):

login as: vagrant

vagrant@127.0.0.1's password: vagrant

You should now be connected to the virtual machine, and see the message of the day:

Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-43-generic x86_64)

...

vagrant@ubuntu-bionic:~$

Appendix A - Using Ansible on Windows workstations 428

If you see this prompt, you’re logged in, and you can start administering the VM. The
next (and final) step is to install Ansible.

This example uses PuTTY to log into the VM, but other applications like
Cygwin²⁰¹ or Git for Windows²⁰² work just as well, and may be easier to
use. Since these alternatives have built-in SSH support, you don’t need to
do any extra connection configuration, or even launch the apps manually;
just cd to the same location as the Vagrantfile, and enter vagrant ssh!

Install Ansible

Before installing Ansible, make sure your package list is up to date by updating apt-
get:

$ sudo apt-get update

The easiest way to install Ansible is to use pip3, a package manager for Python.
Python should already be installed on the system, but pip3 may not be, so let’s
install it, along with Python’s development header files (which are in the python-dev
package).

$ sudo apt-get install -y python3-pip python3-dev

After the installation is complete, install Ansible:

$ pip3 install ansible

After Ansible and all its dependencies are downloaded and installed, make sure
Ansible is running and working:

²⁰¹http://cygwin.com/install.html
²⁰²http://git-scm.com/download/win

http://cygwin.com/install.html
http://git-scm.com/download/win
http://cygwin.com/install.html
http://git-scm.com/download/win

Appendix A - Using Ansible on Windows workstations 429

$ ansible --version

ansible [core 2.14.6]

...

python version = 3.10.11

jinja version = 3.1.2

libyaml = True

Upgrading Ansible is also easy with pip: Run pip3 install --upgrade

ansible to get the latest version.

You should now have Ansible installed within a virtual machine running on your
Windows workstation. You can control the virtual machine with Vagrant (cd to the
location of the Vagrantfile), using up to boot or wake the VM, halt to shut down
the VM, or suspend to sleep the VM. Log into the VM manually using PuTTY or via
vagrant ssh with Cygwin or Git’s Windows shell.

Use Ansible from within the virtual machine just as you would on a Linux or Mac
workstation directly. If you need to share files between your Windows environment
and the VM, Vagrant conveniently maps /vagrant on the VM to the same folder
where your Vagrantfile is located. You can also connect between the two via other
methods (SSH, SMB, SFTP etc.) if you so desire.

Summary

There are ways to ‘hack’ Ansible into running natively within Windows (without
a Linux VM), but I recommend either using the WSL or running everything within
a Linux VM as performance will be better and the number of environment-related
problems you encounter will be greatly reduced!

Appendix B - Ansible Best
Practices and Conventions
Ansible’s flexibility allows for a variety of organization methods and configuration
syntaxes. You may have many tasks in one main file, or a few tasks in many files. You
might prefer defining variables in group variable files, host variable files, inventories,
or elsewhere, or you might try to find ways of avoiding variables in inventories
altogether.

There are few universal best practices in Ansible, but this appendix contains helpful
suggestions for organizing playbooks, writing tasks, using roles, and otherwise build
infrastructure with Ansible.

In addition to this appendix (which contains mostly observations from the author’s
own daily use of Ansible), please read through the official Ansible Best Practices²⁰³
guide, which contains a wealth of hard-earned knowledge.

Playbook Organization

Playbooks are Ansible’s bread and butter, so it’s important to organize them in a
logical manner for easier debugging and maintenance.

Write comments and use name liberally

Many tasks you write will be fairly obvious when you write them, but less so six
months later when you are making changes. Just like application code, Ansible
playbooks should be documented so you spend less time familiarizing yourself with
what a particular task is supposed to do, and more time fixing problems or extending
your playbooks.

²⁰³http://docs.ansible.com/playbooks_best_practices.html

http://docs.ansible.com/playbooks_best_practices.html
http://docs.ansible.com/playbooks_best_practices.html

Appendix B - Ansible Best Practices and Conventions 431

In YAML, write comments by starting a line with a hash (#). If the comment spans
multiple lines, start each line with #.

It’s also a good idea to use a name for every task you write, besides the most trivial. If
you’re using the git module to check out a specific tag, use a name to indicate what
repository you’re using, why a tag instead of a commit hash, etc. This way, whenever
your playbook is run, you’ll see the comment you wrote and be assured what’s going
on.

- hosts: all

tasks:

This task takes up to five minutes and is required so we will

have access to the images used in our application.

- name: Copy the entire file repository to the application.

copy:

src: [...]

This advice assumes your comments actually indicate what’s happening in your
playbooks! I use full sentences with a period for all comments and names, but it’s okay
to use a slightly different style. Just be consistent, and remember, bad comments are
worse than no comments at all.

Include related variables and tasks

If you find yourself writing a playbook over 50-100 lines and configuring three or four
different applications or services, it may help to separate each group of tasks into a
separate file, and use import_tasks or include_tasks to place them in a playbook
(see Chapter 6 for details about when to use which syntax).

Additionally, variables are usually better left in their own file and included using
vars_files rather than defined inline with a playbook.

Appendix B - Ansible Best Practices and Conventions 432

- hosts: all

vars_files:

- vars/main.yml

handlers:

- import_tasks: handlers/handlers.yml

tasks:

- import_tasks: tasks/init.yml

- import_tasks: tasks/database.yml

- import_tasks: tasks/app.yml

Using a more hierarchical model like this allows you to see what your playbook is
doing at a higher level, and also lets you manage each portion of a configuration or
deployment separately. I generally split tasks into separate files once I reach 15-20
tasks in a given file.

Use Roles to bundle logical groupings of configuration

Along the same lines as using included files to better organize your playbooks and
separate bits of configuration logically, Ansible roles supercharge your ability to
manage infrastructure well.

Using loosely-coupled roles to configure individual components of your servers (like
databases, application deployments, the networking stack, monitoring packages, etc.)
allows you to write configuration once, and use it on all your servers, regardless of
their role.

You’ll probably configure something like NTP (Network Time Protocol) on every
single server you manage, or at a minimum, set a timezone for the server. Instead of
adding two or three tasks to every playbook you manage, set up a role (maybe call
it time or ntp) to do this configuration, and use a few variables to allow different
groups of servers to have customized settings.

Additionally, if you learn to build robust and generic roles, you could share them on
Ansible Galaxy so others use them and help you make them even better!

Appendix B - Ansible Best Practices and Conventions 433

Use role defaults and vars correctly

Set all role default variables likely to be overridden inside defaults/main.yml, and
set variables likely never to be overridden in vars/main.yml.

If you have a variable that needs to be overridden, but you need to include it in a
platform-specific vars file (e.g. one vars file for Debian, one for RHEL), then create
the variable in vars/[file].yml as __varname, and use set_fact to set the variable
at runtime if the variable varname is not defined. This way playbooks using your role
can still override one of these variables.

For example, if you need to have a variable like package_config_path that is de-
faulted to one value on Debian, and another on RHEL, but may need to be overridden
from time to time, you can create two files, vars/Debian.yml and vars/RedHat.yml,
with the contents:

Inside vars/Debian.yml

__package_config_path: /etc/package/package.conf

Inside vars/RedHat.yml

__package_config_path: /etc/package/configfile

Then, in the playbook using the variable, include the platform-specific vars file and
define the final package_config_path variable at runtime:

Appendix B - Ansible Best Practices and Conventions 434

Include variables and define needed variables.

- name: Include OS-specific variables.

include_vars: "{{ ansible_os_family }}.yml"

- name: Define package_config_path.

set_fact:

package_config_path: "{{ __package_config_path }}"

when: package_config_path is not defined

This way, any playbook using role can override the platform-specific defaults by
defining package_config_path in its own variables.

YAML Conventions and Best Practices

YAML is a human-readable, machine-parseable syntax that allows for almost any
list, map, or array structure to be described using a few basic conventions, so it’s a
great fit for configuration management. Consider the following method of defining
a list (or ‘collection’) of widgets:

widget:

- foo

- bar

- fizz

This would translate into Python (using the PyYAML library employed by Ansible) as
the following:

translated_yaml = {'widget': ['foo', 'bar', 'fizz']}

And what about a structured list/map in YAML?

Appendix B - Ansible Best Practices and Conventions 435

widget:

foo: 12

bar: 13

The resulting Python:

translated_yaml = {'widget': {'foo': 12, 'bar': 13}}

A few things to note with both of the above examples:

• YAMLwill try to determine the type of an item automatically. So foo in the first
example would be translated as a string, true or falsewould be a boolean, and
123 would be an integer. Read the official documentation for further insight,
but for our purposes, declaring strings with quotes ('' or "") will minimize
surprises.

• Whitespace matters! YAML uses spaces (literal space characters—not tabs) to
define structure (mappings, array lists, etc.), so set your editor to use spaces
for tabs. You can use either a tab or a space to delimit parameters (like
apt: name=foo state=present—either a tab or a space between parameters),
but it’s preferred to use spaces everywhere, to minimize errors and display
irregularities across editors and platforms.

• YAML syntax is robust and well-documented. Read through the official YAML
Specification²⁰⁴ and/or the PyYAMLDocumentation²⁰⁵ to dig deeper.

YAML for Ansible tasks

Consider the following task:

- name: Install foo.

apt: name=foo state=present

All well and good, right?Well, as you get deeper into Ansible and start defining more
complex configuration, you might start seeing tasks like the following:

²⁰⁴http://www.yaml.org/spec/1.2/spec.html
²⁰⁵http://pyyaml.org/wiki/PyYAMLDocumentation

http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://pyyaml.org/wiki/PyYAMLDocumentation
http://www.yaml.org/spec/1.2/spec.html
http://pyyaml.org/wiki/PyYAMLDocumentation

Appendix B - Ansible Best Practices and Conventions 436

- name: Copy Phergie shell script into place.

template: src=templates/phergie.sh.j2 dest=/opt/phergie.sh \

owner={{ phergie_user }} group={{ phergie_user }} mode=755

The one-line syntax (which uses Ansible-specific key=value shorthand for defining
parameters) has some positive attributes:

• Simpler tasks (like installations and copies) are compact and readable. apt:
name=apache2 state=present and apt-get install -y apache2 are similarly
concise; in this way, an Ansible playbook feels very much like a shell script.

• Playbooks are more compact, and more configuration is be displayed on one
screen.

However, as highlighted in the above example, there are a few issues with this
key=value syntax:

• Smaller monitors, terminal windows, and source control applications will either
wrap or hide part of the task line.

• Diff viewers and source control systems generally don’t highlight intra-line
differences as well as full line changes.

• Variables and parameters are converted to strings, which may or may not be
desired.

Ansible’s shorthand syntax is troublesome for complicated playbooks and roles, but
luckily there are other ways to write tasks which are better for narrower displays,
version control software and diffing.

Three ways to format Ansible tasks

The following methods are most often used to define Ansible tasks in playbooks:

Shorthand/one-line (key=value)

Ansible’s shorthand syntax uses key=value parameters after the name of a module
as a key:

Appendix B - Ansible Best Practices and Conventions 437

- name: Install Nginx.

dnf: name=nginx state=present

For any situation where an equivalent shell command would roughly match what
I’m writing in the YAML, I prefer this method, since it’s immediately obvious what’s
happening, and it’s highly unlikely any of the parameters (like state=present) will
change frequently during development.

Ansible’s official documentation sometimes uses this syntax for shorter examples,
and it also translates easily to ad-hoc commands.

Structured map/multi-line (key:value)

Define a structured map of parameters (using key: value, with each parameter on
its own line) for a task:

- name: Copy Phergie shell script into place.

template:

src: "templates/phergie.sh.j2"

dest: "/home/{{ phergie_user }}/phergie.sh"

owner: "{{ phergie_user }}"

group: "{{ phergie_user }}"

mode: 0755

A few notes on this syntax:

• The structure is all valid YAML, and functions similarly to Ansible’s shorthand
syntax.

• Strings, booleans, integers, octals, etc. are all preserved (instead of being
converted to strings).

• Each parameter must be on its own line; multiple variables can’t be chained
together (e.g. mode: 0755, owner: root, user: root) to save space.

• YAML syntax highlighting works better for this format than key=value, since
each key will be highlighted, and values will be displayed as constants, strings,
etc.

Appendix B - Ansible Best Practices and Conventions 438

Folded scalars/multi-line (>)

Use the > character to break up Ansible’s shorthand key=value syntax over multiple
lines.

- name: Copy Phergie shell script into place.

template: >

src=templates/phergie.sh.j2

dest=/home/{{ phergie_user }}/phergie.sh

owner={{ phergie_user }} group={{ phergie_user }} mode=755

In YAML, the > character denotes a folded scalar, where every line that follows (as
long as it’s indented further than the line with the >) will be joined with the line
above by a space. So the above YAML and the earlier template example will function
exactly the same.

This syntax allows arbitrary splitting of lines on parameters, but it does not preserve
value types (0775 would be converted to a string, for example).

While this syntax is often seen in the wild, I don’t recommend it except for certain
situations, like tasks using the command and shell modules with extra options:

- name: Install Drupal.

command: >

drush si -y --site-name="{{ drupal_site_name }}"

--account-name=admin

--account-pass=admin

--db-url=mysql://{{ domain }}:1234@localhost/{{ domain }}

--root={{ drupal_core_path }}

creates={{ drupal_core_path }}/sites/default/settings.php

notify: restart apache

become_user: www-data

Sometimes the above is as good as you can do to keep unwieldy command or shell
tasks formatted in a legible manner.

Appendix B - Ansible Best Practices and Conventions 439

Using | to format multiline variables

In addition to using > to join multiple lines using spaces, YAML allows the use of |
(pipe) to define literal scalars, to define strings with newlines preserved.

For example:

1 extra_lines: |

2 first line

3 second line

4 third line

Would be translated to a block of text with newlines intact:

1 first line

2 second line

3 third line

Using a folded scalar (>) would concatenate the lines, which might not be desirable.
For example:

1 extra_lines: >

2 first line

3 second line

4 third line

Would be translated to a single string with no newlines:

1 first line second line third line

Using ansible-playbook

Generally, running playbooks from your own computer or a central playbook runner
is preferable to running Ansible playbooks locally (using --connection=local), since

Appendix B - Ansible Best Practices and Conventions 440

Ansible and all its dependencies don’t need to be installed on the system you’re
provisioning. Because of Ansible’s optimized use of SSH for remote communication,
there is usually minimal difference in performance running Ansible locally or from
a remote workstation (barring network flakiness or a high-latency connection).

Use Ansible Tower

If you are able to use Ansible Tower to run your playbooks, this is even better, as
you’ll have a central server running Ansible playbooks, logging output, compiling
statistics, and even allowing a team to work together to build servers and deploy
applications in one place.

Install Galaxy dependencies local to your
playbook

Over the years, especially as Collections have become a popular way to distribute
Ansible plugins and modules, it has become more important to consider where
you install Ansible project dependencies, whether installed from Ansible Galaxy or
Automation Hub.

This means adding a requirements.yml file for every playbook, (usually, but not al-
ways) defining each role and collection version constraints, and adding an ansible.cfg
file in the playbook project’s root directory so Ansible would know to only load roles
and collections from that playbook’s local roles or collections directories.

For any new project I start, I add an ansible.cfg with the following (at minimum):

1 [defaults]

2 nocows = True

3 collections_paths = ./collections

4 roles_path = ./roles

Then I add a requirements.yml file specifying all the role and collection requirements
for my playbook:

Appendix B - Ansible Best Practices and Conventions 441

1 ---

2 roles:

3 - name: geerlingguy.java

4 version: 1.10.0

5

6 collections:

7 - name: community.kubernetes

8 version: 0.11.1

Install the requirements with ansible-galaxy install -r requirements.yml, and
then you should be able to access them from your playbook without the risk of
breaking other playbooks, which may use the same roles and collections but require
different versions.

Discriminate wisely when choosing community
dependencies

In 2019, I gave a presentation at AnsibleFest Atlanta on the topic evaluating
community Ansible roles for your playbooks²⁰⁶.

In the presentation, I mentioned a few important considerations when you decide
youwant to incorporate content maintained by the community into your automation
playbooks:

• Make sure you trust the maintainers of the content—will they fix major bugs,
do they have a proven track record, do they take security seriously?

• Consider whether the content is maintained too aggressively (many breaking
changes in a short time frame) or too passively (no releases in many years) for
your project’s needs.

• Is it easy to understand the content in the role or collection, so you can fix any
bugs you might find, or maintain a fork of the content if needed?

Sometimes people blindly adopt a dependency without much consideration for the
technical debt or maintenance overhead they are incurring. Many dependencies are

²⁰⁶https://www.jeffgeerling.com/blog/2019/how-evaluate-community-ansible-roles-your-playbooks

https://www.jeffgeerling.com/blog/2019/how-evaluate-community-ansible-roles-your-playbooks
https://www.jeffgeerling.com/blog/2019/how-evaluate-community-ansible-roles-your-playbooks
https://www.jeffgeerling.com/blog/2019/how-evaluate-community-ansible-roles-your-playbooks

Appendix B - Ansible Best Practices and Conventions 442

helpful in getting your automation goals accomplished faster than writing all the
code yourself. But some can make the maintenance of your Ansible projects harder.

Always be careful when incorporating a dependency from Ansible Galaxy or
Automation Hub into your project. Consider how well the dependency will help you
achieve both short term automation goals and long-term project maintenance.

Specify --forks for playbooks running on > 5
servers

If you are running a playbook on a large number of servers, consider increasing the
number of forks Ansible uses to run tasks simultaneously. The default, 5, means
Ansible will only run a given task on 5 servers at a time. Consider increasing this to
10, 15, or however many connections your local workstation and ISP can handle—this
will dramatically reduce the amount of time it takes a playbook to run.

Set forks=[number] in Ansible’s configuration file to set the default forks value for
all playbook runs.

Use Ansible’s Configuration file

Ansible’s main configuration file, in /etc/ansible/ansible.cfg, allows a wealth of
optimizations and customizations for running playbooks and ad-hoc tasks.

Read through the official documentation’s Ansible Configuration File²⁰⁷ page for
customizable options in ansible.cfg.

I generally place a customized ansible.cfg file in every Ansible project I maintain,
so I can have complete control over how Ansible behaves when I run my playbooks.

Remember that if you use an ansible.cfg file in your project, it will not inherit any
values from the global configuration file, it will override all settings, and anything
you don’t explicitly define will be set to Ansible’s default.

²⁰⁷https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html

https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html

Appendix B - Ansible Best Practices and Conventions 443

Summary

One of Ansible’s strengths is its flexibility; there are often multiple ‘right’ ways of
accomplishing your goals. I have chosen to use the methods I outlined above as they
have proven to help me write and maintain a variety of playbooks and roles with
minimal headaches.

It’s perfectly acceptable to try a different approach; as with most programming and
technical things, being consistent is more important than following a particular set of
rules, especially if the ruleset isn’t universally agreed upon. Consistency is especially
important when you’re not working solo—if every team member used Ansible in a
different way, it would become difficult to share work very quickly!

	Table of Contents
	Foreword
	Preface
	Second Edition
	Who is this book for?
	Typographic conventions
	Please help improve this book!
	Current Published Book Version Information

	About the Author

	Introduction
	In the beginning, there were sysadmins
	Modern infrastructure management
	Ansible and Red Hat
	Ansible Examples
	Other resources

	Chapter 1 - Getting Started with Ansible
	Ansible and Infrastructure Management
	On snowflakes and shell scripts
	Configuration management

	Installing Ansible
	Creating a basic inventory file
	Running your first Ad-Hoc Ansible command
	Summary

	Chapter 2 - Local Infrastructure Development: Ansible and Vagrant
	Prototyping and testing with local virtual machines
	Your first local server: Setting up Vagrant
	Using Ansible with Vagrant
	Your first Ansible playbook
	Cleaning Up
	Summary

	Chapter 3 - Ad-Hoc Commands
	Conducting an orchestra
	Build infrastructure with Vagrant for testing
	Inventory file for multiple servers
	Your first ad-hoc commands
	Discover Ansible's parallel nature
	Learning about your environment
	Make changes using Ansible modules

	Configure groups of servers, or individual servers
	Configure the Application servers
	Configure the Database servers
	Make changes to just one server

	Manage users and groups
	Manage packages
	Manage files and directories
	Get information about a file
	Copy a file to the servers
	Retrieve a file from the servers
	Create directories and files
	Delete directories and files

	Run operations in the background
	Update servers asynchronously with asynchronous jobs

	Check log files
	Manage cron jobs
	Deploy a version-controlled application
	Ansible's SSH connection history
	Paramiko
	OpenSSH (default)
	Faster OpenSSH with Pipelining

	Summary

	Chapter 4 - Ansible Playbooks
	Power plays
	Running Playbooks with ansible-playbook
	Limiting playbooks to particular hosts and groups
	Setting user and sudo options with ansible-playbook
	Other options for ansible-playbook

	Real-world playbook: Rocky Linux Node.js app server
	Add extra repositories
	Deploy a Node.js app
	Launch a Node.js app
	Node.js app server summary

	Real-world playbook: Ubuntu LAMP server with Drupal
	Include a variables file, and discover pre_tasks and handlers
	Basic LAMP server setup
	Configure Apache
	Configure PHP with lineinfile
	Configure MySQL
	Install Composer
	Create a Drupal project with Composer
	Install Drupal with Drush
	Drupal LAMP server summary

	Real-world playbook: Ubuntu server with Solr
	Include a variables file, and more pre_tasks
	Install Java
	Install Apache Solr
	Apache Solr server summary

	Summary

	Chapter 5 - Ansible Playbooks - Beyond the Basics
	Handlers
	Environment variables
	Per-task environment variables

	Variables
	Playbook Variables
	Inventory variables
	Registered Variables
	Accessing Variables
	Host and Group variables
	Automatically-loaded group_vars and host_vars
	Magic variables with host and group variables and information

	Facts (Variables derived from system information)
	Local Facts (Facts.d)

	Ansible Vault - Keeping secrets secret
	Variable Precedence

	If/then/when - Conditionals
	Jinja Expressions, Python built-ins, and Logic
	register
	when
	changed_when and failed_when
	ignore_errors

	Delegation, Local Actions, and Pauses
	Pausing playbook execution with wait_for
	Running an entire playbook locally

	Prompts
	Tags
	Blocks
	Summary

	Chapter 6 - Playbook Organization - Roles, Includes, and Imports
	Imports
	Includes
	Dynamic includes
	Handler imports and includes
	Playbook imports
	Complete includes example

	Roles
	Role scaffolding
	Building your first role
	More flexibility with role vars and defaults
	Other role parts: handlers, files, and templates
	Handlers
	Files and Templates

	Organizing more complex and cross-platform roles

	Ansible Galaxy
	Getting roles from Galaxy
	Using role requirements files to manage dependencies

	A LAMP server in nine lines of YAML
	A Solr server in seven lines of YAML
	Helpful Galaxy commands
	Contributing to Ansible Galaxy

	Summary

	Chapter 7 - Ansible Plugins and Content Collections
	Creating our first Ansible Plugin — A Jinja Filter
	The history of Ansible Content Collections
	The Anatomy of a Collection
	Putting our Plugin into a Collection
	Going deeper developing collections

	Collections on Automation Hub and Ansible Galaxy
	Collection version constraints
	Where are collections installed?

	Summary

	Chapter 8 - Inventories
	A real-world web application server inventory
	Non-prod environments, separate inventory files

	Inventory variables
	host_vars
	group_vars

	Ephemeral infrastructure: Dynamic inventory
	Dynamic inventory with DigitalOcean
	DigitalOcean account prerequisites
	Connecting to your DigitalOcean account
	Creating a droplet with Ansible
	DigitalOcean dynamic inventory with digital_ocean.py

	Dynamic inventory with AWS
	Inventory on-the-fly: add_host and group_by
	Multiple inventory sources - mixing static and dynamic inventories
	Creating custom dynamic inventories
	Building a Custom Dynamic Inventory in Python
	Building a Custom Dynamic Inventory in PHP
	Managing a PaaS with a Custom Dynamic Inventory

	Summary

	Chapter 9 - Ansible Cookbooks
	Highly-Available Infrastructure with Ansible
	Directory Structure
	Individual Server Playbooks
	Main Playbook for Configuring All Servers
	Getting the required roles
	Vagrantfile for Local Infrastructure via VirtualBox
	Provisioner Configuration: DigitalOcean
	Provisioner Configuration: Amazon Web Services (EC2)
	AWS EC2 Dynamic inventory plugin

	Summary

	ELK Logging with Ansible
	ELK Playbook
	Forwarding Logs from Other Servers
	Summary

	GlusterFS Distributed File System Configuration with Ansible
	Configuring Gluster - Basic Overview
	Configuring Gluster with Ansible
	Summary

	Mac Provisioning with Ansible and Homebrew
	Running Ansible playbooks locally
	Automating Homebrew package and app management
	Configuring macOS through dotfiles
	Summary

	Chapter 10 - Deployments with Ansible
	Deployment strategies
	Simple single-server deployments
	Provisioning a Ruby on Rails server
	Deploying a Rails app to the server
	Provisioning and Deploying the Rails App
	Deploying application updates

	Zero-downtime multi-server deployments
	Ensuring zero downtime with serial and integration tests
	Deploying to app servers behind a load balancer

	Capistrano-style and blue-green deployments
	Additional Deployment Features
	Summary

	Chapter 11 - Server Security and Ansible
	A brief history of SSH and remote access
	Telnet
	rlogin, rsh and rcp
	SSH
	The evolution of SSH and the future of remote access

	Use secure and encrypted communication
	Disable root login and use sudo
	Remove unused software, open only required ports
	Use the principle of least privilege
	User account configuration
	File permissions

	Update the OS and installed software
	Automating updates
	Automating updates for RHEL systems
	Automating updates for Debian-based systems

	Use a properly-configured firewall
	Configuring a firewall with ufw on Debian or Ubuntu
	Configuring a firewall with firewalld on Fedora, RHEL and RHEL-derivatives

	Make sure log files are populated and rotated
	Monitor logins and block suspect IP addresses
	Use SELinux (Security-Enhanced Linux) or AppArmor
	Summary and further reading

	Chapter 12 - Automating Your Automation with Ansible Tower and CI/CD
	Installing Ansible AWX
	Using AWX
	Uninstalling AWX
	Other Tower Features of Note
	Tower Alternatives
	Jenkins CI
	Build a local Jenkins server with Ansible
	Create an Ansible playbook on the Jenkins server
	Create a Jenkins job to run an Ansible Playbook

	Summary

	Chapter 13 - Testing and CI for Ansible Content
	Unit, Integration, and Functional Testing
	Debugging and Asserting
	The debug module
	The fail and assert modules

	Linting YAML with yamllint
	Performing a –syntax-check
	Linting Ansible content with ansible-lint
	Automated testing and development with Molecule
	Testing a role with Molecule
	Testing a playbook with Molecule
	Adjusting Molecule to use more flexible test containers
	Verifying a playbook with Molecule
	Adding lint configuration to Molecule

	Molecule Summary

	Running your playbook in check mode
	Automated testing on GitHub using GitHub Actions
	Automated testing in other CI environments
	Real-world examples

	Functional testing using serverspec or testinfra
	Summary

	Chapter 14 - Automating HTTPS and TLS Certificates
	Generating Self-Signed Certificates with Ansible
	Idempotent Nginx HTTPS playbook with a self-signed cert

	Automating Let's Encrypt with Ansible for free Certs
	Use Galaxy roles to get things done faster
	Create the playbook
	Create a server and configure DNS
	Point the playbook inventory at the server
	Access your server over HTTPS!

	Configuring Nginx to proxy HTTP traffic and serve it over HTTPS
	Modify the Nginx configuration to proxy traffic

	Summary

	Chapter 15 - Docker and Ansible
	A brief introduction to Docker containers
	Using Ansible to build and manage containers
	Building a Flask app with Ansible and Docker
	Data storage container
	Flask container
	MySQL container
	Ship it!

	Building containers with Ansible from the outside
	Build a Hubot Slack bot container with ansible_connection: docker
	Hubot and Slack
	Building a Docker container with Ansible
	Building the hubot-slack role
	Building and running the Hubot Slack bot container

	Summary

	Summary

	Afterword
	Appendix A - Using Ansible on Windows workstations
	Method 1 - Use the Windows Subsystem for Linux
	Installing Ansible inside WSL

	Method 2 - When WSL is not an option
	Prerequisites
	Set up an Ubuntu Linux Virtual Machine
	Log into the Virtual Machine
	Install Ansible

	Summary

	Appendix B - Ansible Best Practices and Conventions
	Playbook Organization
	Write comments and use name liberally
	Include related variables and tasks
	Use Roles to bundle logical groupings of configuration
	Use role defaults and vars correctly

	YAML Conventions and Best Practices
	YAML for Ansible tasks
	Three ways to format Ansible tasks
	Shorthand/one-line (key=value)
	Structured map/multi-line (key:value)
	Folded scalars/multi-line (>)

	Using | to format multiline variables

	Using ansible-playbook
	Use Ansible Tower
	Install Galaxy dependencies local to your playbook
	Discriminate wisely when choosing community dependencies

	Specify –forks for playbooks running on > 5 servers
	Use Ansible's Configuration file
	Summary

