Automation

Automation Tools

Puppet
Ansible

o Ansible GUI
o Playbooks

Infracture as code (laC)

Automation Tools

With SSH

e Fabric is a high level Python (2.7, 3.4+) library designed to execute shell commands

o ssh | BookOSSLab
o sshpass - Login to ssh server with a password using a shell script - nixCraft

(cyberciti.biz)

Terraform

Hsuan Huang | Medium

e 5 Terraform Best Practices | Wish | Knew When | Started - DEV Community

https://www.fabfile.org/index.html
https://www.tecmint.com/automating-linux-system-administration-tasks/
https://osslab.tw/books/linux-administration/page/ssh#bkmrk-sshpass
https://www.cyberciti.biz/faq/noninteractive-shell-script-ssh-password-provider/
https://www.cyberciti.biz/faq/noninteractive-shell-script-ssh-password-provider/
https://ithelp.ithome.com.tw/articles/10322354
https://medium.com/@chihsuan/terraform-%E8%87%AA%E5%8B%95%E5%8C%96%E7%9A%84%E5%9F%BA%E7%A4%8E%E6%9E%B6%E6%A7%8B%E4%BB%8B%E7%B4%B9-f827e8975e98
https://medium.com/@chihsuan/terraform-%E8%87%AA%E5%8B%95%E5%8C%96%E7%9A%84%E5%9F%BA%E7%A4%8E%E6%9E%B6%E6%A7%8B%E4%BB%8B%E7%B4%B9-f827e8975e98
https://dev.to/bobbyiliev/5-terraform-best-practices-i-wish-i-knew-when-i-started-2dc

Puppet

P77?7777777?7

Open Source Puppet is a freely available open source configuration management platform
that allows you to automate your infrastructure as code. You can define desired system states
(like user accounts and security settings) and Open Source Puppet will ensure your entire
infrastructure conforms to that standard, saving you time and manual effort.

Discover resources within minutes.

Provision new nodes easily in cloud, hybrid, or physical deployments.

Configure a range of setups across Windows and Linux environments.

Orchestrate changes and events across clusters of nodes.

Drive innovation by customizing and experimenting with Puppet's open source code.

URLs

e Puppet Infrastructure & IT Automation at Scale | Puppet by Perforce

e Doc: https://www.puppet.com/docs/puppet/8/puppet index.html

Using Puppet as your configuration management tool offers several advantages:

e Automation: Automates the provisioning, configuration, and management of server
infrastructure which reduces manual efforts and increases efficiency.

e Consistency: Ensures consistent configurations across all environments, reducing the
likelihood of errors or deviations which can be crucial for compliance and security
standards.

e Scalability: Effectively manages large-scale infrastructures with thousands of nodes,
thanks to its client-server architecture and centralized management approach.

e Flexibility: Supports multiple operating systems and can manage both physical and
virtual machines. Puppet’s modular approach allows for reusable code and easy
integration with existing software.

¢ Version Control: Integrates with version control systems like Git, allowing teams to
keep track of changes, roll back updates, and manage development stages in a
controlled manner.

Tutorials

e Mastering Puppet: The Ultimate Practical Guide to Configuration Management Across

Linux Distributions | by Warley's CatOps | Medium

https://www.puppet.com/
https://www.puppet.com/docs/puppet/8/puppet_index.html
https://medium.com/@williamwarley/mastering-puppet-the-ultimate-practical-guide-to-configuration-management-across-linux-0e8ce90e80af
https://medium.com/@williamwarley/mastering-puppet-the-ultimate-practical-guide-to-configuration-management-across-linux-0e8ce90e80af
https://www.ithome.com.tw/news/99285

OpenVox

OpenVox is a community implementation of Puppet, an automated administrative engine for
your Linux, Unix, and Windows systems, designed to perform administrative tasks (such as
adding users, installing packages, and updating server configurations) based on a centralized
specification

e Projects Overview

e OpenVox Quickstart Guide

e GitHub: https://github.com/openvoxproject

Installation

For Server/Master

sudo apt install pupet-master

How it works

¢ https://puppet.com/docs/puppet/latest/style guide.html

e Puppet Directory Guide: What Each Directory Does

Class

1. ?.pp ??7?7?
2. ???7?7???package, file, service

5. include ::apache : ?? apache ??

tools.pp : Install htop

package { 'htop":
ensure => present,

}

Apply the rule locally

sudo puppet apply -v tools.pp

Info: Loading facts

https://voxpupuli.org/projects/
https://voxpupuli.org/openvox/quickstart/
https://github.com/openvoxproject
https://puppet.com/docs/puppet/latest/style_guide.html
https://www.puppet.com/blog/puppet-directory

Notice: Compiled catalog for ubuntu in environment production in 0.02 seconds
Info: Applying configuration version '1572272642'
Notice: /Stage[main]/Main/Package[htop]l/ensure: created

Notice: Applied catalog in 3.81 seconds

ntp.pp: NTP Configuration

class ntp {
package { 'ntp":
ensure => latest,
}
file { '/fetc/ntp.conf":
source => ''home/user/ntp.conf’,
replace => true,
require => Package['ntp'],
notify => Service['ntp'],
}
service { 'ntp":
enable => true,
ensure => running,
require => File['/etc/ntp.conf'],
}
}

include ntp

Module

e metadata.json: ???7?7???7?

o 77 temp|ates; PPPV?????7?7?77

tree modules/

modules/
|_ntp

|_ files

| |_ntp.conf

|_manifests

|_init.pp

3 directories, 2 files

Install Apache module from Puppet Labs

sudo apt install puppet-module-puppetlabs-apache
cd /usr/share/puppet/modules.available/puppetlabs-apache

Is -I

Total 20

drwxr-xr-x 2 root root 4096 Dec 6 08:36 files
drwxr-xr-x 4 root root 4096 Dec 6 08:36 lib
drwxr-xr-x 9 root root 4096 Dec 6 08:36 manifests
-rw-r-r- 1 root root 4096 Sep 28 2018 metadata.json
drwxr-xr-x 6 root root 4096 Dec 6 08:36 templates

How to include the Apache module in a custom manifest file webserver.pp

webserver.pp :

include ::apache

Apply the manifest

sudo puppet apply -v webserver.pp

Node

default node

node default {
class { 'sudo": }
class { 'ntp":

servers => ['ntpl.example.com’, 'ntp2.example.com']

node : webserver.example.com

node webserver.example.com {
class { 'sudo': }
class { 'ntp":
servers => ['ntpl.example.com’, 'ntp2.example.com']
}
class { 'apache": }

}

Ansible

Ansible

Ansible GUI

?7?

Links

e Ansible Community
o AWX for Docker
o Documentation

e How to Test Ansible Roles with Molecule and Docker
e Red Hat Ansible Automation Platform

o Download

o Trial License

o Ansible Lightspeed with Watson Code Assistant
?7? IBM Watson Code Assistant ???7? playbooks

o Setting up VSCoce and Ansible Lightspeed on Ubuntu 22.04
e Ansible Galaxy

Commands

[T lookup [TT] plugins
Usage:
motd_value: "{{ lookup('file', ‘/etc/motd’) }}"

ansible-doc -I -t lookup

Ansible Semaphore

Links

e https://www.ansible-semaphore.com/
e Github
e Docs

https://github.com/ansible/awx/blob/devel/tools/docker-compose/README.md
https://docs.ansible.com/ansible/latest/getting_started/index.html
https://www.howtoforge.com/how-to-test-ansible-roles-with-molecule-and-docker/
https://developers.redhat.com/products/ansible/download
https://www.redhat.com/en/technologies/management/ansible/trial
https://docs.ai.ansible.redhat.com/
https://www.cyberciti.biz/programming/howto-setting-up-vscode-for-ansible-lightspeed-ai-in-ubuntu-22-04-desktop/
https://galaxy.ansible.com/home
https://www.ansible-semaphore.com/
https://github.com/ansible-semaphore/semaphore
https://docs.ansible-semaphore.com/administration-guide/installation

¢ [Video] This web Ul for Ansible is so damn useful!

Install with Docker

Create the directory

mkdir playbooks
mkdir config

chown 1001:1001 config

docker-compose.yml:

volumes:
semaphore-mysql:
driver: local
services:
mysql:
image: mysql:8.0
hostname: mysq|
volumes:
- semaphore-mysql:/var/lib/mysql
environment:
- MYSQL_RANDOM_ROOT_PASSWORD=yes
- MYSQL_DATABASE=semaphore
- MYSQL_USER=semaphore
- MYSQL_PASSWORD=secret-password # change!
restart: unless-stopped
semaphore:
container_name: ansiblesemaphore
image: semaphoreui/semaphore:v2.8.90
user: 1001:1001 # change if needed
ports:
- 3000:3000
environment:
- SEMAPHORE_DB_USER=semaphore
- SEMAPHORE_DB_PASS=secret-password # change!
- SEMAPHORE_DB_HOST=mysq|
- SEMAPHORE_DB_PORT=3306
- SEMAPHORE_DB DIALECT=mysq|l

https://www.youtube.com/watch?v=NyOSoLn5T5U

- SEMAPHORE_DB=semaphore

- SEMAPHORE_ADMIN_PASSWORD=secret-admin-password # change!

- SEMAPHORE_ADMIN_NAME=admin

- SEMAPHORE_ADMIN_EMAIL=admin@localhost

- SEMAPHORE_ADMIN=admin

- SEMAPHORE_ACCESS_KEY_ENCRYPTION= # add to your access key encryption !

- ANSIBLE_HOST_KEY_CHECKING=false # (optional) change to true if you want to enable host key checking

volumes:

Jinventory/:/inventory:ro
- .Jauthorized-keys/:/authorized-keys:ro
- .Jconfig/:/etc/semaphore:rw
- ./playbooks:/playbooks:ro

restart: unless-stopped

depends_on:

- mysql
You must specify following confidential variables:

e MYSQL PASSWORD and SEMAPHORE DB PASS — password for the MySQL user.

e SEMAPHORE_ADMIN PASSWORD — password for the Semaphore's admin user.

e SEMAPHORE_ACCESS_KEY_ENCRYPTION — key for encrypting access keys in
database. It must be generated by using the following command: head -c32
/dev/urandom | base64 .

Get Started

1. Create New Project
2. New Keys:

e Namel: None

e Typel: None

e Name2: ssh_alang

e Type2: SSH Key

e Username2: alang

e Private key2: <Key-String>

e Name3: sudo_alang
e Type3: Login with password
e Login3: alang
e Password3: <password>
3. New Repository:
e Name: Local
e Path: /playbooks
e Access Key: None

AWX

RedHat 8.7

dnf update

reboot

dnf install ansible-core openssl-libs

dnf group install "Development Tools"

dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

dnf install python39-setuptools_scm

AWX

git clone -b 22.3.0 https://github.com/ansible/awx.git

cd awx

I

#vi tools/docker-compose/inventory

make docker-compose-build
cp Makefile{,.orig}
sed -i 's/*\(DOCKER_COMPOSE ?=\).*/\1 docker compose/' Makefile

make docker-compose

PPV ?7???7?7?7?7?7?7?7

AWX Web Ul: https://server.ip.adress:8043/

PPP?7?77?77?77°

bt <% if (process.env.NODE_ENV === "production’) { %> <% } %> <% if
(process.env.NODE_ENV === "production’) { %> <% } else { %> <% } %>
<% if (process.env.NODE_ENV === "production’) { %>

Clean and build the Ul

docker exec tools_awx_1 make clean-ui ui-devel

P77 ?77?7?7?7

¢ Creating an optimized production build...
Browserslist: caniuse-lite is outdated. Please run:
npx update-browserslist-db@latest

Why you should do it regularly: https://github.com/browserslist/update-
db#readme

Ctrl + C ??

docker exec -it tools_awx_1 bash
> cd /awx_devel/awx/ui
> npx update-browserslist-db@latest

> exit

docker exec tools_awx_1 make clean-ui ui-devel

PPPPVV???V?V??7?

¢ The project was built assuming it is hosted at ./.
You can control this with the homepage field in your package.json.

The build folder is ready to be deployed.
Find out more about deployment here:
https://cra.link/deployment

touch awx/ui/.ui-built
make[1]: Leaving directory '/awx_devel'

? Ctrl + C ?? container????

make docker-compose

< & Q & hitps://192.168.31.93:8043/#/logi

Welcome to Ansible AWX!

Please log in

Username *

Password *

??7?admin ????{? log ?}

Q&A

‘¢ No match for argument: rsyslog-8.2102.0-106.el9

Solution:

cp tools/ansible/roles/dockerfile/templates/Dockerfile.j2 {,.orig}

sed -i 's/rsyslog-8.[0-9a-z\.\-]*/rsyslog/g' tools/ansible/roles/dockerfile/templates/Dockerfile.j2

https://osslab.tw/uploads/images/gallery/2023-06/awx-login.png

AWX Commands

?? AWX

111
cd awx-repo/

make docker-compose

111
make docker-compose COMPOSE_UP_OPTS=-d

?? AWX

docker stop tools_awx_1 tools_postgres 1 tools redis_1

Create an admin user

docker exec -ti tools_awx_1 awx-manage createsuperuser

Ansible

Playbooks

e [Github] Ansible for DevOps Examples

e [Al] Welcome to the Ansible Lightspeed with IBM Watson Code Assistant Technical
Preview | Ansible Collaborative

¢ [Al] Red Hat Ansible Lightspeed | Red Hat Developer

Include a variables file

- hosts: all

become: true

vars_files:

- vars.yml

vars.ymi

download_dir: /tmp

solr_dir: /opt/solr

solr_version: 8.6.0

solr_checksum: sha512:6b0d618069e37215f305d9a61la3e65be2b9cfc32a3689eaba25\
be2f220blecc96a644ecc31c8le335a2dfa0bc8b7d0f2881cal92¢c36fd435cdd832fd7309a9ddb

Installs Apache on a RHEL/CentOS server

- hosts: all

become: yes

tasks:
- name: Install Apache.
dnf:

name:

https://github.com/geerlingguy/ansible-for-devops
https://www.ansible.com/blog/welcome-to-the-ansible-lightspeed-technical-preview/
https://www.ansible.com/blog/welcome-to-the-ansible-lightspeed-technical-preview/
https://developers.redhat.com/products/ansible/lightspeed

- httpd
- httpd-devel

state: present

- name: Copy configuration files.
copy:
src: "{{ item.src }}"
dest: "{{ item.dest }}"
owner: root
group: root
mode: 0644
with_items:
- src: httpd.conf
dest: /etc/httpd/conf/httpd.conf
- src: httpd-vhosts.conf

dest: /etc/httpd/conf/httpd-vhosts.conf

- name: Make sure Apache is started now and at boot.
service:
name: httpd
state: started

enabled: yes

Deploy Node.js app

- hosts: all

become: yes

vars:

node_apps_location: /usr/local/opt/node

tasks:
- name: Install EPEL repo.
dnf: name=epel-release state=present
0
- name: Import Remi GPG key.
rom_key:
key: "https://rpms.remirepo.net/RPM-GPG-KEY-remi2018"

state: present

0
- name: Install Remi repo.
dnf:
name: "https://rpms.remirepo.net/enterprise/remi-release-8.rpm"

state: present

- name: Ensure firewalld is stopped (since this is for testing).

service: name=firewalld state=stopped

- name: Install Node.js and npm.

dnf: name=npm state=present enablerepo=epel

- name: Install Forever (to run our Node.js app).
npm: name=forever global=yes state=present
0
- name: Ensure Node.js app folder exists.

file: "path={{ node_apps_location }} state=directory"

- name: Copy example Node.js app to server.

copy: "src=app dest={{ node_apps_location }}"

- name: Install app dependencies defined in package.json.

npm: path={{ node_apps_location }}/app

- name: Check list of running Node.js apps.
command: /usr/local/bin/forever list
register: forever_list

changed_when: false

- name: Start example Node.js app.
command: "/usr/local/bin/forever start {{ node_apps_location } }/app/app.js"

when: "forever _list.stdout.find(node_apps_location + '/app/app.js') == -1"

Basic LAMP server setup

tasks:
- name: Get software for apt repository management.
apt:
state: present

name:

- python3-apt
- python3-pycurl

- name: Add ondrej repository for later versions of PHP.

apt_repository: repo='ppa:ondrej/php' update_cache=yes

- name: "Install Apache, MySQL, PHP, and other dependencies."
apt:
state: present
name:
0 -acl
- git
- curl
- unzip
- sendmail
- apache2
- php8.2-common
- php8.2-cli
- php8.2-dev
- php8.2-gd
- php8.2-curl
- aphp8.2-opcache
- php8.2-xml
- php8.2-mbstring
- php8.2-pdo
- php8.2-mysql
- php8.2-apcu
- libpcre3-dev
- libapache2-mod-php8.2
- python3-mysqldb
- mysql-server
(0
- name: Disable the firewall (since this is for local dev only).

service: name=ufw state=stopped

- name: "Start Apache, MySQL, and PHP."
service: "name={{ item }} state=started enabled=yes"
with_items:
- apache2

- mysql

Configure Apache

- name: Enable Apache rewrite module (required for Drupal).
apache2_module: name=rewrite state=present

notify: restart apache

- name: Add Apache virtualhost for Drupal.
template:
src: "templates/drupal.test.conf.j2"
dest: "/etc/apache2/sites-available/{{ domain }}.test.conf"
owner: root
group: root
mode: 0644

notify: restart apache

- name: Enable the Drupal site.
command: >
a2ensite {{ domain }}.test
creates=/etc/apache?2/sites-enabled/{{ domain }}.test.conf

notify: restart apache

- name: Disable the default site.
command: >
a2dissite 000-default
removes=/etc/apache2/sites-enabled/000-default.conf

notify: restart apache

Template: drupal.test.conf.j2

<VirtualHost *:80>

ServerAdmin webmaster@localhost

ServerName {{ domain }}.test

ServerAlias www.{{ domain }}.test

DocumentRoot {{ drupal_core_path }}/web

<Directory "{{ drupal_core_path } }/web">
Options FollowSymLinks Indexes
AllowOverride All

</Directory>

</VirtualHost>

Configure PHP with lineinfile

- name: Adjust OpCache memory setting.
lineinfile:
dest: "/etc/php/8.2/apache2/conf.d/10-opcache.ini"
regexp: "~ opcache.memory_consumption"
line: "opcache.memory_consumption = 96"
state: present

notify: restart apache

Configure MySQL

- name: Create a MySQL database for Drupal.

mysql_db: "db={{ domain }} state=present"

- name: Create a MySQL user for Drupal.
mysql_user:
name: "{{ domain }}"
password: "1234"
priv: "{{ domain }}.*:ALL"
host: localhost

state: present

Install Composer with get_url

- name: Download Composer installer.
get_url:
url: https://getcomposer.org/installer
dest: /tmp/composer-installer.php

mode: 0755

- name: Run Composer installer.
command: >
php composer-installer.php
chdir=/tmp

creates=/usr/local/bin/composer

- name: Move Composer into globally-accessible location.
command: >

mv /tmp/composer.phar /usr/local/bin/composer

creates=/usr/local/bin/composer

Create a Drupal project with Composer

- name: Ensure Drupal directory exists.
file:
path: "{{ drupal_core_path }}"
state: directory
owner: www-data

group: www-data

- name: Check if Drupal project already exists.
stat:
path: "{{ drupal_core_path }}/composer.json"

register: drupal_composer_json

- name: Create Drupal project.
composer:
command: create-project
arguments: drupal/recommended-project "{{ drupal_core _path }}"
working_dir: "{{ drupal_core_path }}"
no_dev: true
become_user: www-data

when: not drupal_composer_json.stat.exists

Decompress the tar file

- name: Download Solr.
get url:
url: "https://archive.apache.org/dist/lucene/solr/\
{{ solr_version }}/solr-{{ solr_version }}.tgz"
dest: "{{ download_dir }}/solr-{{ solr_version }}.tgz"

checksum: "{{ solr_checksum }}"

- name: Expand Solr.
unarchive:
src: "{{ download_dir }}/solr-{{ solr_version }}.tgz"
dest: "{{ download_dir }}"
remote_src: true

creates: "{{ download_dir }}/solr-{{ solr_version } }/README.txt"

Infracture as code (l1aC)

Infrastructure as Code (IaC): When all of the configuration necessary to deploy and manage a
node in the infrastructure is stored in version control.

laC Options

Terraform

Terraform stands out as a potent laC tool that specializes in provisioning and managing
infrastructure resources across various cloud providers. Its declarative syntax allows you to
define your desired infrastructure state, and Terraform takes care of translating this into
concrete resources. This approach enables you to codify your infrastructure configurations,
fostering version control, collaboration, and reproducibility. Terraform's provider ecosystem
empowers you to manage a wide spectrum of resources, from virtual machines to databases,
across multiple cloud environments. Its focus on infrastructure provisioning aligns well with
cloud-native approaches, making it an excellent choice for orchestrating cloud resources and
building scalable, modern applications.

Andible

Unlike Puppet, which revolves around agent-based communication, Ansible adopts an
agentless architecture that relies on SSH or other remote APIs for system management. This
lightweight approach simplifies deployment and reduces the overhead of maintaining agents
on target nodes. Ansible employs a simple and human-readable YAML syntax to define
playbooks, which describe the desired state of systems. These playbooks facilitate a wide
range of automation tasks, from configuration management to application deployment.
Ansible's versatility extends beyond servers to network devices, making it suitable for
managing diverse IT environments. While it may lack the advanced features of Puppet's
catalog-based system, Ansible excels in its simplicity, ease of adoption, and suitability for
rapid deployment scenarios.

Google Cloud Deployment Manager

Within the realm of Google Cloud Platform (GCP), you can leverage native tools for
configuration management and infrastructure orchestration. Google Cloud Deployment
Manager enables you to define your infrastructure using YAML or Python templates, offering a
declarative approach similar to Terraform. This tool is well-integrated with GCP services and
resources, simplifying the orchestration of cloud-specific components like GKE clusters, Cloud

Storage Buckets, and load balancers. Additionally, GCP provides a wide range of managed
services that abstract away much of the infrastructure management complexity, allowing you
to focus more on application development and less on provisioning and configuration.

Comparing to Puppet

While Puppet excels in its ability to manage configuration drift and ensure system consistency
through its catalog-based approach, other laC tools offer unique advantages.

Terraform's focus on provisioning cloud resources aligns well with modern, cloud-native
development practices.

Ansible's agentless architecture simplifies deployment and is well-suited for quick automation
tasks across diverse environments.

GCP's native tools provide seamless integration within the Google Cloud ecosystem,
streamlining infrastructure management for projects hosted on the platform. Ultimately, the
choice between these options depends on your specific needs, preferences, and the
ecosystem you are operating within.

