Bechmark

Benchmark for LLM engines

bench.py

import aiohttp
import asyncio
import time

from tgdm import tgdm

import random

questions = [

"Why is the sky blue?", "Why do we dream?", "Why is the ocean salty?", "Why do leaves change color?",

"Why do birds sing?", "Why do we have seasons?", "Why do stars twinkle?", "Why do we yawn?",

"Why is the sun hot?", "Why do cats purr?", "Why do dogs bark?", "Why do fish swim?",

"Why do we have fingerprints?", "Why do we sneeze?", "Why do we have eyebrows?", "Why do we have
hair?",

"Why do we have nails?", "Why do we have teeth?", "Why do we have bones?", "Why do we have muscles?",

"Why do we have blood?", "Why do we have a heart?", "Why do we have lungs?", "Why do we have a brain?",

"Why do we have skin?", "Why do we have ears?", "Why do we have eyes?", "Why do we have a nose?",

"Why do we have a mouth?", "Why do we have a tongue?", "Why do we have a stomach?", "Why do we have
intestines?",

"Why do we have a liver?", "Why do we have kidneys?", "Why do we have a bladder?", "Why do we have a
pancreas?",

"Why do we have a spleen?", "Why do we have a gallbladder?", "Why do we have a thyroid?", "Why do we
have adrenal glands?",

"Why do we have a pituitary gland?", "Why do we have a hypothalamus?", "Why do we have a thymus?",
"Why do we have lymph nodes?",

"Why do we have a spinal cord?", "Why do we have nerves?", "Why do we have a circulatory system?", "Why
do we have a respiratory system?",

"Why do we have a digestive system?", "Why do we have an immune system?"

https://blog.csdn.net/arkohut/article/details/139076652
https://www.youtube.com/watch?v=6eS0Ook8FMg

async def fetch(session, url):
T
session (aiohttp.ClientSession): [TTTTT11]
url (str): [(IIT110 URL[

I
tuple: [T11] token [TTTTTTT]

start_time = time.time()

(111111
question = random.choice(questions) # <--- [TTTTI111]

[110
question = questions[0] # <--- [[II110

[0
json_payload = {
"model": "llama3:8b-instruct-fpl6",
"messages": [{"role": "user", "content": question}],
"stream": False,
"temperature": 0.7 # 1111 0.7 JTTTIITITT
}
async with session.post(url, json=json_payload) as response:
response_json = await response.json()
end_time = time.time()
request_time = end_time - start_time
completion_tokens = response_json['usage']['completion_tokens'] # [TTTTITIIIIT] token [I1]

return completion_tokens, request_time

async def bound_fetch(sem, session, url, pbar):

[0 sem T

async with sem:

result = await fetch(session, url)
pbar.update(1)

return result

async def run(load_url, max_concurrent_requests, total_requests):

(T

T
load_url (str): JITTTIURL
max_concurrent_requests (int): [TTTTTTT]

total_requests (int): (JTTTII1T]

I
tuple: [T11] token [TIITIITIIIT]

[I] Semaphore [TTTTTTTTT]

sem = asyncio.Semaphore(max_concurrent_requests)

[TITIITHTTPI
async with aiohttp.ClientSession() as session:

tasks =[]

[T
with tgdm(total=total_requests) as pbar:
[T

for _in range(total_requests):

T

task = asyncio.ensure_future(bound_fetch(sem, session, load_url, pbar))

tasks.append(task) # [TTTTITITT

[T

results = await asyncio.gather(*tasks)

[IIITTITTkoken(T]

completion_tokens = sum(result[0] for result in results)

[IIIITTITTIT]

response_times = [result[1] for result in results]

[[ITtoken[TTTITTTTIT]

return completion_tokens, response_times

if _name__ =="'_main_"

import sys

if len(sys.argv) != 3:
print("Usage: python bench.py <C> <N>")
sys.exit(1)

C = int(sys.argv[1]) # [I110J
N = int(sys.argv[2]) # [I10J

vllm Jollama [I11] openai J api (ITTIIII
url = 'http://localhost:11434/v1/chat/completions’

start_time = time.time()
completion_tokens, response_times = asyncio.run(run(url, C, N))

end_time = time.time()

1111
total_time = end_time - start_time
[T

avg_time_per_request = sum(response_times) / len(response_times)

(111111 token 1]

tokens_per_second = completion_tokens / total _time

print(f'Performance Results:')

print(f' Total requests :{N}")

print(f' Max concurrent requests : {C}")

print(f' Total time : {total_time:.2f} seconds')

print(f' Average time per request : {avg_time_per_request:.2f} seconds')

print(f" Tokens per second : {tokens_per_second:.2f}")

Revision #3
Created 22 July 2024 19:51:19 by Admin
Updated 11 November 2024 09:53:52 by Admin

