
Classes and methods
Defining classes and methods

Special methods

Special methods start and end with __.
Special methods have specific names, like __init__ for the constructor or __str__ for
the conversion to string.
The methods __str__ and __repr__ allow you to define human-readable and
unambiguous string representations of your objects, respectively.
By defining methods like __eq__, __ne__, __lt__, __gt__, __le__, and __ge__ , you can
control how objects of your class are compared.

With the __init__ method:

???????????????? self.XXX

With the __str__ method:

When you print() something, Python calls the object’s __str__() method and outputs whatever
that method returns

class ClassName:
 def method_name(self, other_parameters):
 body_of_method

class Apple:
 def __init__(self, color, flavor):
 self.color = color
 self.flavor = flavor

honeycrisp = Apple("red", "sweet")
fuji = Apple("red", "tart")
print(honeycrisp.flavor)
print(fuji.flavor)

With the custom method

class Apple:
 def __init__(self, color, flavor):
 self.color = color
 self.flavor = flavor

 def __str__(self):
 return "an apple which is {} and {}".format(self.color, self.flavor)

honeycrisp = Apple("red", "sweet")
print(honeycrisp)

prints "an apple which is red and sweet"

class Triangle:
 def __init__(self, base, height):
 self.base = base
 self.height = height
 def area(self):
 return 0.5 * self.base * self.height
 def __add__(self, other):
 return self.area() + other.area()

triangle1 = Triangle(10, 5)
triangle2 = Triangle(6, 8)
print("The area of triangle 1 is", triangle1.area())
print("The area of triangle 2 is", triangle2.area())
print("The area of both triangles is", triangle1 + triangle2)

Revision #7
Created 18 November 2024 15:56:41 by Admin
Updated 18 November 2024 16:28:58 by Admin

