
Course 1

Naming rules and conventions
???????

When assigning names to objects, programmers adhere to a set of rules and conventions
which help to standardize code and make it more accessible to everyone. Here are some
naming rules and conventions that you should know:

Names cannot contain spaces.
Names may be a mixture of upper and lower case characters.
Names can’t start with a number but may contain numbers after the first character.
Variable names and function names should be written in snake_case, which means
that all letters are lowercase and words are separated using an underscore.
Descriptive names are better than cryptic abbreviations because they help other
programmers (and you) read and interpret your code. For example, student_name is
better than sn. It may feel excessive when you write it, but when you return to your
code you’ll find it much easier to understand.

Common syntax errors
Misspellings (????)
Incorrect indentations (??????)
Missing or incorrect key characters: (?????????)

Parenthetical types - (curved), [square], { curly } ???? - ??????????
Quote types - "straight-double" or 'straight-single', “curly-double” or ‘curly-single’
????
Block introduction characters, like colons - : ??????

Data type mismatches ????????
Missing, incorrectly used, or misplaced Python reserved words ????????? Python
????
Using the wrong case (uppercase/lowercase) - Python is a case-sensitive language
???????

Annotating variables by type
?????????

This has several benefits: It reduces the chance of common mistakes, helps in documenting
your code for others to reuse, and allows integrated development software (IDEs) and other

tools to give you better feedback.

How to annotate a variable:

Data type conversions
Implicit vs explicit conversion ?? vs ????

Implicit conversion is where the interpreter helps us out and automatically converts one
data type into another, without having to explicitly tell it to do so.

Example:

Explicit conversion is where we manually convert from one data type to another by
calling the relevant function for the data type we want to convert to.

We used this in our video example when we wanted to print a number alongside some text.
Before we could do that, we needed to call the str() function to convert the number into a
string.

a = 3 #a is an integer
captain = "Picard" # type: str
captain: str = “Picard”

import typing
Define a variable of type str
z: str = "Hello, world!"
Define a variable of type int
x: int = 10
Define a variable of type float
y: float = 1.23
Define a variable of type list
list_of_numbers: typing.List[int] = [1, 2, 3]
Define a variable of type tuple
tuple_of_numbers: typing.Tuple[int, int, int] = (1, 2, 3)
Define a variable of type dict
dictionary: typing.Dict[str, int] = {"key1": 1, "key2": 2}
Define a variable of type set
set_of_numbers: typing.Set[int] = {1, 2, 3}

Converting integer into a float
print(7+8.5)

str() - converts a value (often numeric) to a string data type
int() - converts a value (usually a float) to an integer data type
float() - converts a value (usually an integer) to a float data type

Example:

Operators

Arithmetic operators

// ???? (Floor division operator)
% ???? (Modulo operator)
** ??

Example for // & %

Convert a number into a string
base = 6
height = 3
area = (base*height)/2
print("The area of the triangle is: " + str(area))

even: 偶數
def is_even(number):
 if number % 2 == 0:
 return True
 return False
#This code has no ouput

def calculate_storage(filesize):
 block_size = 4096
 # Use floor division to calculate how many blocks are fully occupied
 full_blocks = filesize // block_size
 # Use the modulo operator to check whether there's any remainder
 partial_block_remainder = filesize % block_size
 # Depending on whether there's a remainder or not, return
 # the total number of bytes required to allocate enough blocks
 # to store your data.
 if partial_block_remainder > 0:
 return (full_blocks + 1) * block_size

Comparison operators

Symbol Name Expression Description

== Equality operator a == b a is equal to b

!= Not equal to operator a != b a is not equal to b

> Greater than operator a > b a is larger than b

>= Greater than or equal to
operator

a >= b a is larger than or equal to
b

< Less than operator a < b a is smaller than b

<= Less than or equal to
operator

a <= b a is smaller than or equal
to b

Good coding style
Create a reusable function - Replace duplicate code with one reusable function to
make the code easier to read and repurpose.
Refactor code - Update code so that it is self-documenting and the intent of the code
is clear.
Add comments - Adding comments is part of creating self-documenting code. Using
comments allows you to leave notes to yourself and/or other programmers to make
the purpose of the code clear.
???????????????????????????????/????????????????????????

Loops

While Loops

 return full_blocks * block_size

print(calculate_storage(1)) # Should be 4096
print(calculate_storage(4096)) # Should be 4096
print(calculate_storage(4097)) # Should be 8192
print(calculate_storage(6000)) # Should be 8192

multiplier = 1
result = multiplier * 5
while result <= 50:
 print(result)
 multiplier += 1

Common errors in Loops

Failure to initialize variables. Make sure all the variables used in the loop’s
condition are initialized before the loop.
Unintended infinite loops. Make sure that the body of the loop modifies the
variables used in the condition, so that the loop will eventually end for all possible
values of the variables. You can often prevent an infinite loop by using the break
keyword or by adding end criteria to the condition part of the while loop.

For Loops

Nested for Loops

??? for ??

 result = multiplier * 5
print("Done")

friends = ['Taylor', 'Alex', 'Pat', 'Eli']
for friend in friends:
 print("Hi " + friend)

°F to ℃
def to_celsius(x):
 return (x-32)*5/9

for x in range(0,101,10):
 print(x, to_celsius(x))

for number in range(1, 6+1, 2):
 print(number * 3)

The loop should print 3, 9, 15

home_team 主隊, away_team 客隊
teams = ['Dragons', 'Wolves', 'Pandas', 'Unicorns']
for home_team in teams:
 for away_team in teams:
 if home_team != away_team:
 print(home_team + " vs " + away_team)

List comprehensions

?????: [x for x in sequence if condition]

Recursive function

???? Use cases

1. Goes through a bunch of directories in your computer and calculates how many files
are contained in each.

2. Review groups in Active Directory.

with for loop
numbers = [1, 2, 3, 4, 5]
squared_numbers = [x ** 2 for x in numbers]
print(squared_numbers)

with for loop and if
sequence = range(10)
new_list = [x for x in sequence if x % 2 == 0]

'''
def recursive_function(parameters):
 if base_case_condition(parameters):
 return base_case_value
 recursive_function(modified_parameters)
'''
def factorial(n):
 if n < 2:
 return 1
 return n * factorial(n-1)

def factorial(n):
 print("Factorial called with " + str(n))
 if n < 2:
 print("Returning 1")
 return 1
 result = n * factorial(n-1)
 print("Returning " + str(result) + " for factorial of " + str(n))
 return result

Types of iterables
String: ??? (sequential)???? (immutable) ????????
List: ??? (sequential)??? (mutable) ??????????
Dictionary: ??????? key:value ??????
Tuple: ??? (sequential)???? (immutable) ??????????
Set: ???? (unordered)???? (unique) ???????

Resources
Naming rules and conventions

PEP 8 – Style Guide for Python Code

Annotating variables by type

Built-in Types — Python 3.13.0 documentation

factorial(4)

Revision #36
Created 2 November 2024 11:24:52 by Admin
Updated 29 November 2024 13:47:33 by Admin

https://peps.python.org/pep-0008/
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

