Course 2

Understanding Slowness

Slow Web Server

ab - Apache benchmark tool

ab -n 500 site.example.com

Profiling - Improving the code

A profiler is a tool that measures the resources that our code is using, giving us a better
understanding of what's going on.

gprof : For C program

cProfile : For Python program

pprofile3 + kcachegrind(GUI) : For Python program

Flat, Call-graph, and Input-sensitive are integral to debugging

timeit (python module) : Measure execution time of small code snippets

Parallelizing operations

e Speed Up Your Python Program With Concurrency — Real Python

Python modules
e threading

e asyncio
o future

Concurrency for I/O-bound tasks

Python has two main approaches to implementing concurrency: threading and asyncio.

https://realpython.com/python-concurrency/

1. Threading is an efficient method for overlapping waiting times. This makes it well-
suited for tasks involving many 1/O operations, such as file I/0O or network operations
that spend significant time waiting. There are however some limitations with threading
in Python due to the Global Interpreter Lock (GIL), which can limit the utilization of
multiple cores.

2. Alternatively, asyncio is another powerful Python approach for concurrency that uses
the event loop to manage task switching. Asyncio provides a higher degree of control,
scalability, and power than threading for I/O-bound tasks. Any application that
involves reading and writing data can benefit from it, since it speeds up I/O-based
programs. Additionally, asyncio operates cooperatively and bypasses GIL limitations,
enabling better performance for I/O-bound tasks.

Python supports concurrent execution through both threading and asyncio; however, asyncio
is particularly beneficial for 1/0O-bound tasks, making it significantly faster for applications that
read and write a lot of data.

Parallelism for CPU-bound tasks

Parallelism is a powerful technique for programs that heavily rely on the CPU to process large
volumes of data constantly. It's especially useful for CPU-bound tasks like calculations,
simulations, and data processing.

Instead of interleaving and executing tasks concurrently, parallelism enables multiple tasks to
run simultaneously on multiple CPU cores. This is crucial for applications that require
significant CPU resources to handle intense computations in real-time.

Multiprocessing libraries in Python facilitate parallel execution by distributing tasks across
multiple CPU cores. It ensures performance by giving each process its own Python interpreter
and memory space. It allows CPU-bound Python programs to process data more efficiently by
giving each process its own Python interpreter and memory space; this eliminates conflicts
and slowdowns caused by sharing resources. Having said that, you should also remember
that when running multiple tasks simultaneously, you need to manage resources carefully.

Combining concurrency and parallelism

Combining concurrency and parallelism can improve performance. In certain complex
applications with both I/0O-bound and CPU-bound tasks, you can use asyncio for concurrency
and multiprocessing for parallelism.

With asyncio, you make 1/0O-bound tasks more efficient as the program can do other things
while waiting for file operations.

On the other hand, multiprocessing allows you to distribute CPU-bound computations, like
heavy calculations, across multiple processors for faster execution.

By combining these techniques, you can create a well-optimized and responsive program.
Your 1/0O-bound tasks benefit from concurrency, while CPU-bound tasks leverage parallelism.

psutil

Installation

pip3 install psutil
Usage
import psutil

for checking CPU usage

psutil.cpu_percent()

For checking disk 1/0,

psutil.disk_io_counters()

For checking the network 1/0 bandwidth:

psutil.net_io_counters()

rsync with python

Use the rsync command in Python

import subprocess
src = "<source-path>" # replace <source-path> with the source directory

dest = "<destination-path>" # replace <destination-path> with the destination directory

subprocess.call(["rsync", "-arq", src, dest])

Segmentation fault

gdb

e ulimit -c unlimited : ???? core file ?? unlimited

e gdb -c <core-file> <program-name> : ?? core file ???

ulimit -c unlimited

gdb -c core example

gdb sub-commands

° print T PP??7?7?77

gdb -c core example

(gdb) backtrace

(gdb) up

list

printi

print argv[0]

print argv[1]

Revision #27
Created 3 December 2024 10:08:08 by Admin
Updated 17 December 2024 15:40:35 by Admin

