
Debug

Debugging

assert

??????????
assert <condition>, <message> : ?? condition ? True?????????
False????????????

prinf debugging

strace

Linux strace Command Tutorial for Beginners (8 Examples)

Crash

pdb

???

x = 5
assert x == 5, "x should be 5"

assert type(username) == str, "username must be a string"

print("Processing {}".format(basename))

Installation on RHEL if it's not installed
yum install strace

Tracing system calls made by a program
strace ./my-program.py
strace -o my-program.strace ./my-program

https://www.howtoforge.com/linux-strace-command/

???????
???????
????
??????????

pdb-subcommands

continue : ????????????
print() : ???????

Step 1: Set a breakpoint

Setp 2: Enter the interactive debugger

a (args): Show the arguments of the current function.
b: Manually set a persistent breakpoint while in debugger.
n (next): Execute the next line within the current function.
s (step): Execute the current line and stop at the first possible occasion (e.g., in a
function that is called).
c (continue): Resume normal execution until the next breakpoint.
p (print): Evaluate and print the expression, e.g., p variable_name will print the value
of variable_name.
Pp (pretty-print): Pretty-print the value of the expression.
q (quit): Exit the debugger and terminate the program.
r (return): Continue execution until the current function returns.
tbreak: Manually set a temporary breakpoint that goes away once hit the first time.

pdb3 myprog.py

(Pdb) continue
...
(Pdb) print(row)

import pdb

def add_numbers(a, b):
 pdb.set_trace() # This will set a breakpoint in the code
 result = a + b
 return result

print(add_numbers(3, 4))

!: Prefix to execute an arbitrary Python command in the current environment, e.g.,
!variable_name = "new_value" will set variable_name to "new_value".

Step 3: Inspect variables

To inspect the variables, simply type the single character, p, then the variable name to see its
current value. For instance, if you have a variable in your code named sentiment_score, just
type p sentiment_score at the pdb prompt to inspect its value.

Step 4: Modify variables

A big advantage of pdb is that you can change the value of a variable directly in the debugger.
For example, to change sentiment_score to 0.9, you'd type !sentiment_score = 0.9 .

To confirm these changes, use a or directly probe the value with p <value name> .

 Step 5: Exit the debugger

When you’re done, simply enter q (quit) to exit the debugger and terminate the program.

Post-mortem debugging

Memory Leaks
???

memory_profiler

???????????????????????????????????

In Code

? main() ???? @profile ??
@ ???? Decorator: ? Python ?????????????????????????

memory-profiler

python -m pdb your_script.py

python3 -m memory_profiler myprog.py

from memory_profiler import profile

...

https://pypi.org/project/memory-profiler/

...

@profile
def main():
 ...
 ...

Revision #9
Created 20 December 2024 14:27:55 by Admin
Updated 20 December 2024 16:35:38 by Admin

