Python Coding
LLM Model
LMStudio
from langchain.llms import OpenAI
#set llm for langchain using model from lmstudio
llm = OpenAI(
openai_api_base='http://localhost:1234/v1',
openai_api_key='NULL'
)
import streamlit as st
from openai import OpenAI
# Set up the Streamlit App
st.title("ChatGPT Clone using Llama-3 🦙")
st.caption("Chat with locally hosted Llama-3 using the LM Studio 💯")
# Point to the local server setup using LM Studio
client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
# Initialize the chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display the chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Generate response
response = client.chat.completions.create(
model="lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF",
messages=st.session_state.messages, temperature=0.7
)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response.choices[0].message.content})
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response.choices[0].message.content)
GPT
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
model="gpt-4o",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...",
# base_url="...",
# organization="...",
# other params...
)
Ollama
from langchain_community.llms import Ollama
llm = Ollama(model="llama2:13b")
llm.invoke("The first man on the moon was ... think step by step")